Envelon wins German Design Award for façade-integrated solar solution
The solar façade system from Grenzebach Envelon convinced the jurors in terms of both aesthetic implementation and planning freedom.
The manufacturer of façade-integrated solar systems Grenzebach Enveleon has won the prestigious German Design Award of the German Design Council. The solar façade system convinced the jury in the category „Excellent product Design – Building and Elements“. „The integration of photovoltaic technology into building façades to generate environmentally friendly electricity from solar energy often faces challenges due to limitations in design aesthetics and technical compatibility with conventional modules,“ is how the jurors outlined the problem. Envelon solves this challenge of integrating solar technology into architecture at a high design level, the jurors judged.
Efficient installation
The system makes it possible to plan façades in different colours and arrangements and gives buildings their own distinctive identity. At the same time, the individual glass panels can be installed efficiently and cleanly thanks to a secure fastening system on the back. Finally, the system consists of two components: the glass-glass solar modules and the substructure, which contains the mounting system and electrical wiring.
System approach simplifies planning
This system approach makes planning easier. This is because, depending on the location and requirements, the individual façades can be designed individually and fitted with modules of different dimensions. This opens up the possibility for architects to plan the façade according to their design ideas. This also includes the fact that the modules from Envelon are provided with a special interference layer on the front, which ensures a colourful appearance and at the same time the highest possible efficiency. The systematic approach also makes the installation of the system easier. (su)
Asca equips new building of Gronau municipal utility with large transparent solar glass façade
Bischoff Glastechnik has integrated organic solar foils into glass for the façade of the new administration building of the Gronau municipal utility. As a result, the façade generates electricity without hindering the view outside.
Windows with several functions at once: The Gronau municipal utility company shows how this works with its new administration building. Because there, the windows not only ensure that sunlight enters the rooms while cold and heat stay outside, but they also generate electricity and provide shade on very sunny days.
Huge glass panes with photovoltaic function
The building consists of a cubic, two-level structure with a clinker brick-look façade. The architects of H III S – Harder Stupfl Schramm from Stuttgart have given the higher part an additional glass façade, which is cantilevered above the ground floor. They inserted glass modules with integrated organic solar foils from Asca, a manufacturer from Kitzingen in Franconia, into this part of the façade. These solar active glass elements reach a size of 3.66 by 2.25 metres and alternate with conventional glass panes. „The showcase facing the street visualises the themes of energy and sustainability,“ the architects explain the design. This approach is underlined by the fact that BGT Bischoff Glastechnik has integrated organic solar foils in green colour into the glass elements. This colouring also establishes the connection to the clinker façade that surrounds the glass façade.
Variety of design possibilities was convincing
The use of organic solar foils in the glass façade makes it easier to integrate a function for electricity production into the elements. This is because the modules are simply laminated into the sandwich glass panels during the normal production process. „The size of the solar modules is world-class and no more complex to produce than normal laminated glass panes,“ says Hermann Issa, project manager at Asca, describing the implementation of the project. „The variety of design possibilities convinced us,“ add the architects, referring to the freedom in shape, colour and size offered by organic photovoltaics (OPV). The architects were of course able to influence the design of the solar foils. „Building-integrated photovoltaics is a hot topic that will continue to gain importance in the future,“ they are certain.
Using the advantages of OPV
The organic solar elements cover a façade area of 222 square metres. „With this project, we are showing how easy it is to manufacture solar-active façade elements with OPV products. Planners and designers no longer have to fear any technical hurdles, even with customised façade modules of this enormous size,“ says Hermann Issa, describing the central advantage of the technology.
Further advantages are the good low-light behaviour and the possibility of transparency. Because by using the organic solar films in the façade glass, the employees of the Gronau municipal utility do not have to sit in the dark. After all, the OPV films let enough light into the building, but despite their transparency, they offer a feeling of enclosure and security – with a full view outside. (su)
Germany: Hessian authorities must approve solar installations on listed buildings
The Hessian state government has published a guideline for the approval of solar installations on historical buildings. In doing so, it is bringing together protection of cultural assets and the climate.
The Hessian Ministry of Science and the Arts, in its capacity as the highest authority for the protection of historical monuments, has issued a guideline on how solar systems can be erected on and in listed buildings. This guideline contains concrete requirements for the monument authorities with regard to the approval of solar systems on or in cultural monuments. It is a clear regulation for the approval of solar installations on such buildings. „Permission for solar installations is now to be granted on a regular basis,“ the authors describe the aim to be achieved by the guideline. „However, the prerequisite remains the precise examination of the application, taking into account the associated encroachment on the substance as well as the reasons for designation of the monument.“
Guidance for the implementation of projects
With the published guideline, the Ministry offers an overview not only to the responsible authorities, but also to building owners and solar project developers of the legal requirements of the approval process and the technical basis for the consideration decision. The guideline also contains information and suggestions on how solar systems can be integrated into heritage-protected buildings while at the same time preserving the high cultural value of the buildings. You can find the guideline in German language on the website of the Ministry of Science in Wiesbaden. (su)
My PV’s solar-electric operations building produces more electricity than it consumes.
The annual balance of the first completely solar-electric supply has exceeded all expectations. My PV's new company building is not only supplied with 60 percent of its own solar power, but even earned almost 16,000 euros.
In its first year of operation, the My PV company building achieved a balance sheet self-sufficiency of 347.9 percent. This value results from the balance of grid feed-in and grid purchase. More than half of the energy is supplied by the photovoltaic system in the façade and on the roof of the building. The special feature: The result includes all sectors, i.e. hot water, space heating and mobility in addition to the electrical consumers, because My PV supplies all four sectors purely electrically.
Result further improved
Even in the winter half-year of the first heating season from November 2021 to April 2022, the building was self-sufficient in terms of energy. The high yield of the solar system in the façade and on the roof in the summer months, combined with the zero heat demand, has now further improved the result. Thus, in the entire first year of operation, the photovoltaic system directly provided 59.9 percent of the total energy for the building. My PV sourced the remaining 40.1 percent of its electricity needs from the grid. At the same time, however, 3.5 times of this amount was fed into the grid in form of solar power.
67 percent lower costs than with conventional heating
The financial advantage also suggests a switch to full solar-electric supply for commercial buildings. My PV calculated annual operating costs of 2,100 euros. This would have been 67 percent less than for commercial buildings of similar size with conventional heating technology. The calculation was based on costs for commercial electricity of 16 cents per kilowatt hour and revenues from grid feed-in of the solar energy of four cents per kilowatt hour – both common values at the time of the forecast in September 2021.
Building earns money
Due to the good functioning of the solar-electric concept, My PV has now been able to reduce the operating costs to 402.84 euros based on the prices in September 2021. However, since energy prices have risen just as dramatically since March 2022 as the monetary revenues from solar power feed-in, My PV has now actually registered a large plus in real terms: My PV’s solar-electric domestic technology in the building resulted in negative operating costs of 15,829.24 euros. The Upper Austrian company thus even earned a five-digit amount by operating the building. „Even with these shifted framework conditions with higher feed-in prices than purchase prices, which are absolutely unnatural and unsustainable, our business model has potential. Oil and gas have an expiry date, and it remains economical to use photovoltaic energy directly in the house, even for heat!“ summarises My PV CEO Gerhard Rimpler.
Meyer Burger launches new solar roof tiles with Dachdecker-Einkauf Süd
The two partners are launching the first pilot projects with the new solar roof tile from the pilot production facility in Thalheim. The complete market launch is planned for 2023.
The module manufacturer Meyer Burger already presented its new solar roof tiles a year ago at the Intersolar and subsequently at other trade fairs. The first products will soon be delivered under the name Meyer Burger Tile. For this purpose, the wholesaler Dachdecker-Einkauf Süd (DE Süd) is supervising the first pilot projects with the new solar roof tile and is implementing them together with its roofing customers.
Pilot production started in Thalheim
The solar roof tiles used in these projects come from Meyer Burger’s pilot production in Thalheim, a district of Bitterfeld-Wolfen in Saxony-Anhalt. After completion of the current pilot phase, the complete market launch of Meyer Burger Tile is planned for the second half of 2023. However, Meyer Burger will not manufacture the roof tiles itself. This will be done by a European company specialised in this field. The solar cells and the connection technology, however, will come from the company’s own production. Meyer Burger will also continue to be responsible for the selection and purchase of all materials and components. This will enable the company not only to ensure compliance with its high quality standards, but also to benefit from synergy effects from the existing supply chains and to consistently protect its technology.
Suitable as hard roofing
The advantage of Meyer Burger’s solar tile is the variable covering length, i.e. the distance between the fastening of the roof tile and the fastening of the roof tile underneath. This gives the roofer more flexibility, as he is no longer bound to a fixed substructure dimension. The efficiency of 17 percent is also impressive for a solar roof tile. Meyer Burger is also planning further increases. The solar roof tiles are hail-proof up to a hailstone size of 55 millimetres and are classified as hard roofing. This means that they can be laid right up to the edge of the roof without additional safety distances. Meyer Burger offers a 30-year product and performance guarantee for the solar roof tile. (su)
Envelon: Complete system for solar façades wins design award
The complete system of coloured solar modules including planning and installation by Envelon was awarded Product Design of the Year at the Architecture MaterPrize 2022. The evaluation was based on projects by architect Peter Kuczia.
Envelon’s solar modules for building integration were awarded Product Design of the Year at the prestigious Architecture MasterPrize 2022 at the Guggenheim Museum in Bilbao, Spain. The jury was particularly impressed by the fact that Envelon, unlike conventional solar systems, focuses exclusively on integration into building façades, combining high standards of aesthetics with electrical performance. The jury’s assessment was based on multiple award-winning designs by architect Peter Kuczia, such as the three-dimensional integration of solar modules into a covered cycle path.
Modular process built
Envelon produces solar modules in different colours, which are sold as frameless glass elements forming a complete system. By doing so, the company reduces technical complexity and has built a simple modular process that activates the building façade in combination with an architectural expression. „Thanks to the system, the façade material, in addition to its conventional functions such as technology, protection and aesthetics, also creates added value for the building by converting sunlight into electricity,“ says Kuczia, explaining his multiple collaborations with Envelon.
Colour technology for complete freedom
Yet Envelon is still young in the BIPV industry. The company only started production this year in Hamlar, Bavaria. In addition to this production, however, the company also takes care of customised planning for the respective location and turnkey installation. These individually planned façade kits make the process very simple for the building owner and the architect. The colour technology Envelon uses in its crystalline solar modules gives builders and architects the creative freedom to express their unique aesthetics through a diverse colour palette. This is because an ultra-thin internal coating on the glass makes it possible to offer any colour. (su)
Coburg University and IBC Solar develop solar tiny house
A small house that is fully self-sufficient and powered only by solar energy: That was the approach students at Coburg University took when they developed their tiny house. IBC Solar assisted with the planning of the energy concept and provided the components.
The Design Faculty at Coburg University is currently developing a solar-powered Tinyhouse. The developers turned to IBC Solar for the photovoltaic power supply. „Our interest was quickly aroused, because the combination of energy independence and sustainable building materials is also very exciting for us,“ recalls Stratis Tapanlis, who is responsible for commercial energy systems at IBC Solar. The system provider from Bad Staffelstein then worked with the university’s students, who designed the building in the summer semester of 2021, to design a solar system with control and storage that will supply the building. IBC Solar also provided the components as part of a sponsorship.
Renewable construction materials used
The idea was to create a CO2-free experimental building in which energy monitoring can be carried out over several years while the building is inhabited. The special feature: The living concept should not only function energy self-sufficiently, but also manage without CO2-emitting building materials. „We were very impressed by the design of the tiny house according to cradle-to-cradle principles with renewable building materials such as straw, wood and clay,“ says Tapanlis. „A sustainable energy supply is an equally important component for housing concepts of the future. And we are very happy to contribute to this.“
Fully supplied with solar power
The students wanted to implement this sustainable energy supply. The building is to manage completely without a grid connection and the energy supply is covered exclusively by the photovoltaic system. The surplus solar energy in summer is also to be used to charge e-bikes. To achieve this, twelve solar modules from IBC with a total power output of 4.4 kilowatts were installed. They were mounted on a TopFix 200 Eco on the trapezoidal sheet metal roof of the building. To achieve a self-sufficient supply, the planners also integrated a BYD storage device with a capacity of eight kilowatt hours into the system. Thanks to the modular design of the storage system, it could also be expanded in the future if the system were to be extended.
A heating system for the coming winter was also connected, and the first guests were able to spend the night in the tiny house. This is because the experimental building is available to guest lecturers and students during the academic year from March to December. It is intended to show them how energy-autonomous and CO2-neutral living can be implemented in practice. This is because the concept of the tiny house is being used in more and more areas of application, especially in the use of small remaining areas in the city to make low-cost living possible here. In addition, the desire for self-sufficiency can be realised particularly well in a tiny house – this also applies to energy independence, which is particularly easy to realise with the help of solar energy and a manageable storage volume for the compact living concept, the project partners emphasise. (su)
TÜV Rheinland tests solar modules for building integration
TÜV Rheinland has developed a test standard for BIPV modules. Now the Cologne-based testing service provider is starting to certify the modules. But what exactly is being tested?
TÜV Rheinland has expanded its service programme to include testing and certification of solar modules intended for façade integration or as overhead glazing. The company has developed its own test standard for this purpose (test standard 2 PfG 2796/02.22 – Qualification requirements for photovoltaic modules in buildings). This is a reaction to the increasing demand from suppliers of such building-integrated photovoltaic (BIPV) products. The testing and certification does not replace the general building approval (abZ) by the German Institute for Building Technology (DIBt), which is necessary in Germany if a solar module is to be integrated into the façade or a canopy. Here, however, approval is also possible on a case-by-case basis, which is also not replaced by the TÜV Rheinland test.
Certificate prepares abZ
The TÜV Rheinland certificate can, however, serve as preparation for an abZ or individual case approval. For this purpose, the Cologne testers focus on the characteristics of the photovoltaic modules that are necessary to meet the requirements of the European Buildings Directive (CPR 305/2011) and the Low Voltage Directive (2014/35/EU) as well as the specifications of the European Committee for Electrotechnical Standardisation (CENLEC). For this purpose, the modules have to pass special test sequences which, in addition to photovoltaic properties, also include the requirements for laminated safety and insulating glass as well as for façade products.
Modules receive special test label
TÜV Rheinland tests the product design and carries out regular production monitoring. The module manufacturer then receives a special TÜV Rheinland test label for BIPV products. The aim here is to strengthen consumer confidence through product certification and to counteract the previous uncertainty in the market. „The new TÜV Rheinland certification offers a solution for subjecting building-integrated photovoltaic modules to an independent and standardised testing and quality assurance procedure even before they are sold,“ says Lukas Jakisch, Head of the Solar Department at TÜV Rheinland, describing the advantage for manufacturers and their customers.
Further information on the testing and certification of BIPV modules can be found on the TÜV Rheinland website. (su)
Creaton and Autarq cooperate on production and distribution of solar roof tiles
The two companies have agreed on an extensive cooperation. Creaton will integrate Autarq's solar roof elements into its own tiles and distribute them through its own channels.
The pitched roof supplier Creaton and the producer of solar roof elements Autarq will cooperate more closely in the future in order to implement more architecturally appealing roofs with the use of photovoltaics. With this cooperation, the two companies want to better serve the growing demand for solar elements to be integrated into the roof cladding. In the meantime, Autarq has already taken the production process to a new level with a new series production facility. Now the two companies are joining forces to launch a modern and efficient production of the Creaton PV-Autarq.
Offering solar roof tiles through Creaton’s distribution channel
In future, Creaton will combine the small photovoltaic elements of Autarq with the black Domino roof tiles. The popular smooth tile offers an optimal, flat surface on which the small modules can be placed. The photovoltaic elements are provided by Autarq. These solar roof tiles can then be purchased from Creaton via the usual three-stage distribution channel. In this way, they complement Creaton’s solar world, which also includes roof-integrated and on-roof photovoltaic systems.
Suitable for complex roofs
The advantage of the solution is that the solar roof tiles can also be installed in combination or in exchange for the original tiles. Due to the modular system, the arrangement and size of the solar fields can be flexibly adapted to the customer’s wishes. „The Creaton PV-Autarq roof tile system is modular in design, making it a perfect fit for more complex roof surfaces,“ explains Florian Scherr, Sales Director at Creaton. „We are pleased to be able to offer roofs that can produce, store and consume climate-neutral electricity themselves.“
The solar roof elements are laid like normal roof tiles, while being individually connected to each other by tested plug connections to a previously laid grid on the roof. All connecting cables and plug contacts remain hidden under the tiles and are protected against the weather.
Compatible with all inverters
The systems are supplied as a complete system including planning and advice and can be combined with all common inverters. Inverters are also optionally available with the system. All materials used are UV and weather resistant, non-toxic and recyclable. Connection to the inverter and power grid can also be carried out by the electrician at a later date. The roof does not have to remain open for this.
Red tiles are on the development programme
In the next step, the two cooperation partners will expand the available roof tile models. First of all, it is planned that the Autarq roof tiles will also be available in red. PV elements of the same colour will then be applied to the red tiles, making them hardly recognisable. As a result, they also blend in perfectly with the roof. (su)
Konferenz: Potenziale der solaren Haustechnik und Architektur im Wohnungsbau
Kabel statt Rohre ist das Konzept, das auch im Mehrfamilienhausbau eine Lösung für den Umstieg von Erdgas auf Photovoltaikwärme im Raum steht. Wie es funktioniert und welche Vorteile es hat, zeigen die Referenten auf einer Konferenz am 9. November 2022.
Die Gaspreise sind hoch und damit steigt die Nachfrage nach Alternativen. Neben Wärmpumpen kommt hier auch die direkte solare Wärmeversorgung im Gebäude in Betracht. Diese hat einige Vorteile gegenüber einer aufwändigen wassergeführten Wärmeversorgung. Welche Vorteile das sind und wie solche Konzepte aussehen und umgesetzt werden können, erfahren Planer von Haustechnik und Gebäuden sowie Vertreter von Wohnungsbaugesellschaften auf einer Konferenz rund um die solarelektrische Wärmeversorgung.
Lösungen und Wirtschaftlichkeit zeigen
Dort stellt Timo Leukefeld, Professor für Solarenergie an der TU Bergakademie Freiberg, sein Konzept der Mehrfamilienhäuser mit Energieflatrate und Pauschalmiete vor, das schon mehrfach umgesetzt wurde. Im Anschluss daran geht Dirk Bornhorst, Geschäftsführer von IR Integration auf die Wirtschaftlichkeitsberechungen von solarelektrischen Gebäuden ein. Markus Gundendorfer, Vertriebsleiter von My-PV wird zudem zeigen, wie Immobilieneigentümer im Wohn- und Gewerbesektor Investitions- und Betriebskosten einsparen können, wenn sie auf eine wassergeführte Heizungsanlagen mit einer aufwändigen Verrohrung verzichten.
Die Konferenz findet am 09. November 2022 von 9:30 bis 16 Uhr in Sauerlach bei München statt. Weitere Informationen und einen Link zur Anmeldung finden Sie auf der Landingpage der Konferenz. (su)
Envelon starts production of solar modules for façades
Coloured modules in various sizes and shapes is Envelon's speciality. The company has now commissioned its new production facility for BIPV modules in Bavaria.
In Hamlar, Bavaria, just outside Donauwörth, the new module manufacturer Envelon has put its production facility into operation. The company focuses exclusively on the production of solar elements for photovoltaic façades. With these products for building-integrated photovoltaics (BIPV), Envelon wants to support architects in the implementation of modern new buildings and renovation projects that fit the reality of the new millennium in terms of energy.
Producing 300,000 square metres of facade surface per year
Envelon is a subsidiary of the machine manufacturer Grenzebach. In the new production facility in Hamlar, solar elements with a total area of up to 300,000 square metres can be produced per year. It is hardly possible to give an output figure for production capacity because Envelon produces coloured modules based on crystalline silicon photovoltaic technology. Their performance depends on the respective colouring. „We are proud of this forward-looking step,“ explains Steven Althaus, Managing Director of the Grenzebach Group. „Envelon can make a major contribution to the energy transition in Germany, Europe and overseas with its solar-active façades. This ensures effective climate protection, which we all urgently need – and is an important setting of the course for the future of our company.“
A productive combination
The Grenzebach Group has long been dedicated to photovoltaics with production technology for solar glass and thin-film photovoltaic manufacturing. Here, the focus was also on the construction of large-format photovoltaic systems. The combination of Grenzebach’s expertise in glass production technology and digitalisation and the start-up spirit of the Envelon team makes for a particularly productive combination, emphasises Hans-Peter Merklein, Managing Director of Grenzebach Envelon. „By bundling Envelon production in Hamlar, we remain true to the ‚Made in Germany‘ philosophy. We believe in the potential of our solar-active façades and are focusing on organic growth here in Bavaria.“
Demand for solar façades is rising
Finally, the demand for solar façades is currently increasing rapidly, not only in Europe, but also in China and the USA. An important step for the further development of this sector is the increase of technical efficiency and the expansion of public support, explains Hans-Peter Merklein. „In Germany, we still very often look at classic photovoltaic systems on roofs. But for a sustainable energy and heat transition, we must use all the potential of decentralised energy supply,“ he emphasises. (su)
The team from the University of Stuttgart has developed a modular housing unit for the Solar Decathlon Europe that can be used to add storeys to existing buildings. The energy is supplied by organic solar films from Asca, which are a structural element of the façade.
The Solar Decathlon Europe starts today. The student competition for sustainable buildings is taking place in Wuppertal this year. Over the next two weeks, the 16 teams from European universities, each of which has developed their own houses, will complete competitions in ten individual disciplines. The focus is not only on architectural design, but also on sustainability – both in the choice of materials and in the operation of the buildings.
Sustainable upgrading of existing buildings
Usually, the student teams here rely on solar energy and often on electric heating and cooling. This is also the case with the team from the University of Stuttgart. Collab is the name of the solution developed by the students. Three years of work went into the modular building, which is designed as an additional storey for buildings. It consists of a constructive wooden grid that is placed on top of the existing building. The residential unit is then inserted into this grid. This in turn can be individually designed. In addition to functional walls and intelligent furniture such as a fold-away bed and desk, the living unit also includes all technical components such as kitchen, bathroom, heating and cooling.
Creating living space quickly and easily
In this way, the Stuttgart-based team wants to tackle the problem of scarce living space, especially in student cities. After all, the small housing units are each intended for single persons. But of course they have also taken the quality of living and the architecture into consideration. For example, the living units do not extend to the edge of the supporting building. This creates an open space that can be individually designed, but is surrounded by the load-bearing wooden grid.
More room comfort with solar foils
The gaps within the wooden grid are filled in this area with a metal net in which semi-transparent solar modules are integrated. These consist of organic solar foils contributed by Asca, a manufacturer from the Franconian town of Kitzingen. On the one hand, these provide the energy for the residential unit, and on the other hand, they provide shade and improve the comfort of the room. Because the foils are semi-transparent, they let the sun’s rays through in winter and in summer, on the other hand, part of the radiation is blocked, which reduces the need for cooling and ensures more pleasant temperatures.
Solar film delivers energy and provides aesthetics
The advantage: since the organic solar foils can be freely designed in colour, shape and size, the solar façade can be adapted according to the energy needs of the residential unit and its orientation. They also enable an individual and aesthetic design and the generation of sustainable energy. In addition, the modules are extremely lightweight. This allowed the student team to install them quickly and easily.
Energy demand and lighting conditions simulated
To find the perfect placement of the modules on the façade, the students simulated the energy demand, indoor temperature and daily lighting conditions on the Solar Decathlon Europe campus in Wuppertal beforehand. In this way, the shadows cast on the outdoor surface can also be calculated. „It is very interesting to work closely with talented students as they define the architecture of tomorrow. This innovative project is a perfect example of how our solar solution can be used in energetic renovation projects, as it can be flexibly adapted to existing buildings,“ says Hermann Issa. He is a project manager at Asca and responsible for business development.
Heat pump heats the residential unit
This makes the project completely sustainable. This is because the energy required to produce the organic solar films is less than that needed to manufacture conventional solar modules. In addition, the entire façade cladding is made of recycled wood. Heating is provided by an air-water heat pump. To operate it as effectively as possible, the air is preheated in a solar chimney. The residential unit is cooled by a water fountain.
Adapting the concept to other buildings
Thanks to the modular approach, the Collab team can easily transfer the solution to other existing buildings. The concept can be resized to fit the shape of an existing building and its supporting structure. „This concept is a perfect example of the possibilities our solutions offer on the way to more energy-efficient buildings. During renovation work, it is possible to integrate solar solutions into the building envelope, regardless of its original design,“ explains Hermann Issa.
The Solar Decathlon Europe will take place from 10 to 26 June 2022 at the Solar Campus of the Faculty of Architecture and Construction Engineering at the University of Wuppertal. A full programme can be found on the website of the renowned student competition. (su)
After the first heating season: My PV’s company building is energy self-sufficient
The provider of electric heating solutions My PV has evaluated the first heating season in its new company building in Upper Austria. The results are better than expected.
Last year, My PV, a provider of electric heating and thermal solutions, moved into a new company building in Neuzeug, Austria. When building the new facility, My PV paid complete attention to sustainability and, of course, installed its own solutions. For this purpose, electric underfloor heating systems were installed in the rooms of the very well insulated building, which are controlled by power controllers called AC Thor from My PV. The hot water is also heated electrically.
Photovoltaics in the building envelope
The electricity is supplied by several photovoltaic systems. On the one hand, the entire roof is covered with solar modules. On the other hand, vertical bands of solar modules have been mounted on the façades, which integrate perfectly into the natural wood cladding from an aesthetic point of view. At least that is the concept. They also supply the electricity for the production operation, development and offices in the building, as well as for the charging stations for electric cars that were installed in front of the property.
Now that the first year of operation and thus also the first heating season have been completed, My PV is taking stock of whether this concept has worked. The result: even in winter, the building is self-sufficient in terms of energy. The operating costs are even negative. The 100 kilowatts of photovoltaic power on the façade and the monopitch roof were sufficient to supply more than half of the energy for heating, mobility, power supply and hot water.
Positive results after a bad solar winter
Specifically, My PV used 17,344 kilowatt hours from the solar arrays from November 2021 to April 2022. The company sourced a further 15,251 kilowatt hours from the grid. This results in a degree of self-sufficiency of around 53 per cent even in winter. „It is particularly worth mentioning that the solar yields in the problem months of December and January fell short of the long-term average, and in an average year the self-sufficiency would be even higher,“ explains Gerhard Rimpler, CEO of My PV.
More generated than consumed
But My PV has only been able to use part of the electricity from the solar installations directly. This is because the generators supplied more. Overall, My PV achieved a self-consumption of 53.4 percent with the system. This means that the company fed 15,300 kilowatt hours of solar electricity into the grid during the period under consideration. This is even more than it took from the grid, which means that the building actually produced more energy than it consumed and is, at least in balance sheet terms, energy self-sufficient across all sectors of electricity, heat and mobility. „What the Austrian federal government is only aiming for by 2030 – namely self-sufficiency in the balance sheet – we have even achieved in the heating season, and across all sectors,“ says Gerhard Rimpler, summarising the positive result.
Total consumption measured
In order to be able to evaluate the data as accurately as possible, My PV recorded all energy quantities before the start of building use. In addition to the grid connection, the company also measures the energy flows of the solar system, the electric room heating, the water heating, the ventilation and air conditioning system and the charging points. The measurement results show: From November 2021 to April 2022, My PV used 17,400 kilowatt hours for heating. That is very little compared to other company buildings. Here it paid off that My PV focused on an energy-efficient construction standard for the company building with its 858 square metres of floor space. In addition to passive solar and internal gains, only 20 kilowatt hours per square metre are needed to maintain a comfortable indoor climate.
11,350 kilowatt hours of electricity consumed
In addition to heating, the company’s own electric cars charged 3,600 kilowatt hours during the period recorded. With this amount of electricity, the employees covered more than 20,000 kilometres. Another 270 kilowatt hours were used to heat water. Because My PV doesn’t need too much water in the company building. In addition, My PV consumed 11,350 kilowatt-hours of electricity directly, e.g. for lighting, production machinery and office equipment, as well as for the air-conditioning and ventilation system.
Operating costs covered
Thanks to the solar power system, My PV needs less electricity from the grid and thus saves a lot of money. In addition, there is the revenue from the surplus feed-in, which further reduces the operating costs. In the original planning, the company assumed that energy costs of about 2,100 euros per year would still be incurred. After the first heating season, however, it becomes clear that the operating costs are even negative, so My PV is actually still earning money. Not only are the costs for electricity from the grid compensated. The solar system also pays the costs for water, sewage, insurance and property tax. „As a building owner, it is therefore a business to implement your heating technology solar-electrically,“ Rimpler emphasises. „With our headquarters, we are setting new standards in the solar-electric supply of commercial buildings,“ he is sure. (su)
Handbuch zur solaren Architektur im VDE Verlag erschienen
Sonnenstrom aus der Gebäudehülle: Der VDE Verlag hat ein neues Standardwerk zur Bauwerkintegrierten Photovoltaik (BIPV) herausgeben. Es ist auch als E-Book erschienen. Das Buch ist online und im Buchhandel ab sofort lieferbar.
Das neue Fachbuch wurde von Sven Ullrich und Heiko Schwarzburger verfasst, die gemeinsam das Webportal Solar Age speziell für Architektinnen und Architekten betreiben und zum Redaktionsteam der photovoltaik gehören.
Integration und solar-elektrische Vollversorgung
Das sind die Themen: Grundlagen der Solartechnik, Wirtschaftlichkeit von solarer Architektur, Freiheit in der Gestaltung, Technik der Montage, Planung und Auslegung von Solarfassaden, Eigenstrom im Gebäude mit Stromspeicherung, Reduktion der Gewerke und Energiekosten durch solar-elektrische Gebäude, Betrieb und Wartung, Brandschutz, BIPV-relevante Normen & Vorschriften.
Speziell für Architekten und Fachleute der Immobilienbranche
Das Fachbuch/E-Book richtet sich an diese Zielgruppen: Architektinnen & Architekten, Bauplanerinnen & Bauplaner, TGA-Planerinnen & TGA-Planer, Elektro-Fachinstallateure & Solarteure, Facility Managerinnen & Facility Manager.
Ergänzt wird das Werk durch einen Überblick über Anbieter und Produkte für die BIPV. Das Firmenverzeichnis hilft den Architektinnen und Architekten bei Ausschreibungen helfen und erleichtert die Suche nach hochwertigen Produkten der BIPV.
Einzeln bestellbar oder als Kombination
Das neue Fachbuch und das E-Book (220 Seiten, 230 x 270 mm, Hardcover, zahlreiche Abbildungen und Referenzbeispiele) kosten einzeln jeweils 56 Euro, die Kombination von Buch und E-Book 78,40 Euro. ISBN für Bestellung im Buchhandel:
Asca and Epishine to jointly advance organic photovoltaics
A licensing agreement allows Epishine to produce and integrate Asca's organic solar technology into electrical devices. It is another step in breaking down the barriers to OPV and further increasing the acceptance of the technology.
Producing energy where it is needed. The Swedish developer of organic solar cells Epishine is pushing this maxim of the decentralised energy transition to the end. Because the company has specialised in the integration of organic solar cells into electrical devices.
Independent of third parties
In the future, Epishine will use organic photovoltaics (OPV) developed at Asca, a company of the French Armor Group, in Nuremberg. Asca acquired the remaining production and technology patents from the Merck chemical group a few weeks ago. „As the owner of the world’s most important portfolio of intellectual property rights for printed organic photovoltaics, we are now very well positioned for the future. The OPV market is becoming more mature and larger. Therefore, it was clear to us that we also want to strengthen Asca’s position on the patent side. This way we can develop the market further without being dependent on third parties,“ Ralph Paetzold, Managing Director of Asca, explained this step.
Sharing OPV technology
But the company does not only want to use the patents for itself. Asca has now agreed with Epishine to use the technology to jointly advance OPV. This is because a corresponding licensing agreement will enable the Swedish manufacturer to further improve its organic solar modules for the use of light energy indoors. „We are pleased to sign our first licensing agreement with Epishine. The partnership is a logical next step and part of our commitment to support the growth of the organic photovoltaic market,“ emphasises Nicolas Vannieuwenhuyse, Vice President of Asca.
Working with partners
After all, Asca’s strategy from the very beginning was not to manufacture the organic solar films solely in the Kitzingen plant and then deliver them all over the world. Rather, the approach is to produce the films where they are also processed – in this case at Epishine in Sweden. For there they are used directly in sensors, beacons, displays and other small electronic devices. „We are producing a printed organic solar cell with very good performance in low light. As a major player in the industry bringing printed organic solar cells to the international mass market, we see great potential in Asca’s patent portfolio for printed OPV,“ says Anna Björklou, CEO of Epishine.
Tapping the market better
With such licensing agreements with other players in the OPV industry, Asca also aims to break down barriers to market acceptance and increase competitiveness. After all, competition in the field of building and vehicle-integrated photovoltaics, which Asca ploughs, is tough and there is scepticism towards new technologies. „But as a light and flexible solution, OPV allows us to maximise the potential of solar energy because we can easily equip new areas with the technology,“ says Vannieuwenhuyse. (su)
New study: Networked quarters supply themselves with energy optimally and cost-effectively
A regenerative power and heat supply for entire city districts is better and more cost-effective than the decentralised supply of individual buildings. However, this is not possible with the current legal situation, at least in Germany.
Researchers at the Fraunhofer Institute for Solar Energy Systems were commissioned by the German Energy Agency (dena) to investigate the energy supply in urban districts. The aim was to find out whether it is better and, above all, cheaper for each building to supply itself or whether a networked supply for entire city districts is advantageous. The result: the researchers found out that the neighbourhood-optimised supply is ahead.
Self-sufficiency increases
The idea is that solar collectors are mounted on the buildings and regenerative heat suppliers are installed in them. However, the solar electricity and heat are not only consumed in the building where both are produced, but distributed throughout the entire quarter. „Approaches with neighbourhood-optimised electricity and heat supply infrastructure offer significant advantages, especially in terms of specific energy costs and the degree of self-sufficiency,“ says Nicole Pillen, Head of Urban Energy Transition at dena, summarising the results of the study. „Existing potential for electricity generation from renewable energies is better exploited. In addition, other energy sources and waste heat potential can be better tapped and integrated into the central heat supply.“
Up to 45 per cent cheaper
In concrete terms, this means that the share of solar power consumed on site will increase. This also reduces the amount of electricity required from the grid, which brings significant cost advantages. The Freiburg researchers have calculated that this results in cost advantages in the order of 30 to 45 percent compared to supplying the buildings individually. Such approaches, optimised within a neighbourhood, are particularly advantageous in densely built-up urban areas and where energy demand is high.
Legal framework must be adapted
Of course, the scientists also looked at the legal framework in Germany. This is where the big hurdle lies. Because the consumption of locally generated solar power within a neighbourhood is subject to strict regulations. The current legal framework does not allow local actors to set up supply structures at neighbourhood level that enable such a low-threshold energy exchange between the actors in the neighbourhood, emphasis the researchers with view to the situation in Germany. This highlights the urgent need to further develop the legal framework to enable the optimisation of energy systems at neighbourhood level.
Switzerland harmonizes energy labels for buildings
Up to now, Switzerland has had very different energy labels for buildings, which are also based on different calculation factors. These are now to be standardized. This has various advantages.
In order to achieve the climate and energy transition goals, the previously independent building energy labels in Switzerland are being redesigned and harmonized. Until now, the Minergie, GEAK (building energy certificate of the cantons), the Swiss Sustainable Building Standard (SNBS Hochbau) and 2000-Watt-Areas labels have existed side by side. This is to change. To this end, the sponsoring organizations and the Swiss Federal Office of Energy (BFE) have signed an agreement that sets out the framework for future cooperation. In future, only one joint organization will be responsible for the certification of buildings, quality assurance, communication and further training, and an overarching coordination body will be set up at the BFE.
Pooling resources
In this way, synergies are to be achieved. „Sustainable real estate makes a major contribution to climate protection. The trend is positive, but the potential is far from being exhausted. By pooling resources in the building label family, we can achieve a much greater impact,“ says Marc Mächler, President of the Government of the Canton of St. Gallen and President of the Minergie Association, describing the goal of the future cooperation. „The labels complement each other, will be better coordinated and building owners and planners will be able to find out more easily which label meets their needs.“
Individual labels will be strengthened
All in all, there will only be two labels for buildings and sites in the future, and additionally the building energy certificate. The existing Minergie categories (Minergie, Minergie-P, Minergie-A, Minergie-Eco, Minergie-P-Eco and Minergie-A-Eco) will be retained. This will make the market presence and the label definitions clearer. In this way, the individual labels will be strengthened. The previous 2000-Watt-Areas, a project of Energy Switzerland under the leadership of the BFE, will no longer be offered and certified from 31 December 2023. However, there will then be Minergie Areas and SNBS-Areas.
Only one calculation system
In addition, the energy and climate calculations of the building labels will also be harmonized. There will be only one common system for weighting factors. Furthermore, the contact persons for building owners and the organization are to be clearly defined. For building owners and planners, these standardization will bring significant simplifications in building and site planning. In future, they will only need one single calculation system. The start of the adapted joint building label and the two site labels is planned for mid-2023. (su)
Ampeers Energy: Up to ten percent return on investment with CO2 reduction in the real estate industry
Ampeers Energy has published a handout on how the real estate industry can turn retrofitting from a cost driver into a new business model. This even makes CO2 reduction profitable. Up to ten percent returns are possible.
The refurbishment of existing buildings is barely getting off the ground. Particularly in the area of rented properties such as multi-family houses or office buildings, the interest of owners in taking the investment costs in hand and bringing their buildings up to the latest energy and technical standards is limited. For while owners of single-family homes and apartment owners feel the pressure to act via rising energy costs, such motivations are hardly present in the real estate industry.
Do not only see the costs
But the experts at Ampeers Energy do not just see the costs involved in the refurbishment measures. Rather, there are plenty of new business models in energy refurbishment, in the construction of solar plants and in sector coupling, through which the investments can be quickly amortized – even without a lavish increase in rental costs. After all, real estate companies can make a major contribution to reducing their CO2 emissions by generating electricity from renewable sources locally and using it as much as possible on site in buildings or entire neighborhoods.
Own solar power is the lever for profitability
To do this, it is necessary to think about energy supply from planning to operation in a integrated and cross-sectoral way, emphasize the authors of the guide „How the real estate industry achieves CO2 reduction profitably“. After all, using the solar power generated on the roof of the property on site is the lever for the economic viability and profitability of the refurbishment.
Another source of income for real estate companies
In addition, the use of locally generated electricity also opens up completely new opportunities for renewable heat supply or mobility for companies. This starts with tenant electricity offers and goes on to further services such as charging current for electric vehicles and the supply of heat with electricity. These opportunities open up further sources of revenue for the real estate industry. „Financial refurbishment burdens turn into investments in attractive business models in this way,“ emphasize the experts at Ampeers Energy. „The earnings serve as refinancing in the process, so that many refurbishments are possible even without subsidies.“
Using renewables locally
An important aspect continues to be that the use of on-site renewables decouples the buildings and their occupants from rising prices, as well as from supply risks in the electricity and gas markets. This significantly increases the value of the property and makes it more attractive to tenants. This is not irrelevant in the case of commercial real estate. After all, many companies that are tenants in these properties have set their own CO2 reduction and sustainability targets. In the end, this can only be achieved through climate-neutral supply in the office or production building.
Developing business models
The real estate industry can reduce its CO2 emissions by 90 percent simply by using renewable energies – including those produced on site in or on its own building. In the process, they could generate a profit of ten percent. Digital solutions are also important here. After all, with suitable software, property owners can create integrated energy concepts for their estates or even for entire neighborhoods relatively quickly and even develop business models based on this planning.
A systematic approach to refurbishment
For example, the experts at Ampeers Energy advise larger portfolios of the same building types within a real estate company to approach refurbishment systematically. This is because a pilot concept can then simply be transferred to the entire portfolio. This enables companies to implement modernization much more quickly and increase the profitability of investments, Ampeers Energy emphasizes. Such digital concepts are also essential for optimal plant operation.
The 30-page white paper can be downloaded in German language free of charge from the Ampeers Energy website.
Old concrete slab building on the way to energy self-sufficient apartment building
In the German town of Aschersleben, three old concrete slab buildings are being transformed into modern residential apartment houses with a solar power supply. Due to the manageable costs, the energy consumption can be integrated into a flat-rate rent.
To reduce energy costs for tenants, the Building and Housing Association in the German town of Aschersleben (AGW) is taking its own unique approach. The housing company in the small town in Saxony-Anhalt is demonstrating what this looks like with the project it is now planning. AGW has just started to transform three old concrete slab buildings from GDR times into an energy-autonomous apartment building. The highlight: Tenants will no longer have to pay a separate bill for the energy supply. This is already included in the rent as a flat rate.
Solar activation of the building envelope
To achieve energy self-sufficiency, the three old panel buildings will first be completely renovated in terms of energy. In addition, the top two floors of the original five-story buildings have already been removed to take account of the population decline in Aschersleben. In the next step, solar modules will be installed on the facades. The roof will also be activated for the production of solar power. To do this, the craftsmen are adding an attic with a monopitch roof facing southwest on top of the third floor. They are integrating solar modules into the entire roof surface.
Heat supply without long pipes
In addition, the three buildings are equipped with a modern energy concept. This is because the solar systems not only power the electrical consumers in the 22 apartments. They also supply the residential units with heat. The planners are relying on an all-electric heat system. The buildings will not have central heating with heat pumps; instead, a hot water boiler with a capacity of 200 liters will be installed in each apartment. These will be powered by surplus solar electricity and will also store it for a longer period of time. „In this way, about 80 percent of the hot water demand can be covered by solar energy,“ explains Timo Leukefeld. The solar expert from the German city of Freiberg has developed the concept of energy self-sufficiency. The remaining demand is covered with green electricity from the grid.
Heating market in transition
Infrared panels provide room heat. „The heating market is undergoing a serious transformation, because in the future it is mainly electricity-powered heating systems that are to be installed. At present, these are still mainly heat pumps, but we are convinced that highly efficient infrared heaters will also be used more and more,“ explains Leukefeld.
Low maintenance effort
After all, such a heating concept has enormous advantages. Because no pipelines are necessary as with conventional water-led heating systems. Thus the expenditure of time and the material costs for the assembly sink. In addition, infrared heaters are maintenance-free for decades, which will be a major advantage in the long term in view of the shortage of craftsmen and rising hourly rates. „That’s a great value in terms of return on investment,“ Leukefeld emphasizes.
Aiming for a high degree of self-sufficiency
To achieve the highest possible degree of self-sufficiency, however, another storage concept is necessary. This is because solar power only flows from the roof when the sun is shining. Therefore, the craftsmen will install solar batteries in the buildings. In addition, the storage mass of the building itself will also be used. These are the thick concrete walls and the new masonry, which will be heated up by the infrared panels. „These three pillars – solar battery, hot water boiler and activated building envelope – ensure a high degree of energy self-sufficiency,“ summarizes Leukefeld the concept. „From March to October, the residents will generally be completely self-sufficient,“ he predicts, citing empirical values from previous projects.
32 euros per month budgeted for energy
For example, Leukefeld expects household electricity consumption to range from 2,000 to 2,500 kilowatt hours per year. After the elimination of the EEG surcharge on self-consumed electricity planned by the German government for mid-2022, energy costs for heating, hot water and household electricity of around 381 euros per residential unit will be incurred. That is just less than 32 euros per month, which is included in the rent. Such an energy flat rate is made possible above all by the high proportion of solar energy. This means that the costs can be reliably planned and the housing company can pass them on in the form of a flat rent. (su)
The next leading trade fair for architecture and building materials will take place from April 17 to 22, 2023. The originally planned scope for January 2023 will be retained.
The organizer of BAU Munich has decided to postpone the trade fair planned for January 2023 to a new date. The world’s leading trade show for architecture, building materials and construction systems, at which suppliers of building-integrated solar solutions also exhibit, will be held in Munich from April 17 to 22, 2023.
Security for planning
This is the organizer’s response to the risk that a new corona wave will arrive in January 2023 and that the trade fair would then have to be canceled. The decision to postpone the show by three months was made by BAU’s Exhibitor Advisory Board and Board of Trustees in a joint meeting. „BAU is a world-leading trade fair and our aim is to bring exhibitors and guests from all over the world together here in Munich. With this unique shift from January to April, we want to offer our customers and participants maximum certainty for their planning,“ says Reinhard Pfeiffer, Deputy CEO of Messe München, explaining the decision.
Keeping an eye on climate change
The previously planned thematic hall structure will remain in place. Thus, there will be a hall in which solutions to the challenges posed to the construction industry by climate change will be exhibited. In addition to the thematic halls „Affordable Housing,“ „Resources and Recycling“ and „Digital Transformation,“ the new theme „Modular Construction“ will also be retained. As before, BAU is still planning on 19 halls for the April date.
All information on participation, registration and the supporting program, as well as on exhibitors, can be found on the trade show’s website. (su)
BIPV Alliance: Consider solar building envelope when introducing a solar obligation
Building-integrated photovoltaics (BIPV) offers the opportunity to harmonize a solar obligation with architecture and to involve building owners. Therefore, when introducing such a duty, the solar building envelope must be considered from the very beginning.
The German BIPV Alliance sees a planned introduction of mandatory solar as a huge opportunity for the building integration of photovoltaics, if the legal framework is designed accordingly. It must not lead to conventional and integrated photovoltaics being played off against each other. Therefore, some points should be made when designing a solar obligation – both at the local, state and federal levels.
BIPV can improve acceptance
A crucial point is the acceptance of photovoltaics, which should not be undermined by a solar obligation. Therefore, its introduction should be accompanied by measures that facilitate the installation and operation of photovotlaic systems, including BIPV systems. „A clear and consistent legal framework is needed for the expansion of solar energy,“ the association wrote in a statement.
Do not neglect aesthetics
In addition, the massive expansion of photovoltaics, which the solar obligation seeks to achieve, must be coordinated with building culture. „An ‚aesthetic burden‘ must be counteracted at an early stage with all available means,“ the association emphasizes. One component for this, it says, is the promotion of BIPV. This is because it offers the possibilities of integrating solar energy almost invisibly into buildings or designing it in such a way that it can be harmonized with the architecture. It even provides solutions for buildings under historical preservation. Ideally, this support should be provided within existing structures. However, appropriate practical measures should also be implemented to support BIPV.
Include all surface potentials
When designing the solar obligation, all surface potentials must be taken into account. This includes not only roofs, but also façades or special structural elements such as balconies, terraces or conservatories. Particularly in tall buildings, the greatest potential for solar self-sufficiency lies in the façade, since there is little roof area available compared to the usable space. Therefore, the installation of photovoltaics in such areas must become easier, tha alliance BIPV stated.
More information needed for architects
However, incentives must also be created to activate the building envelope with solar modules. To this end, the association proposes equal tax treatment with conventional systems in terms of depreciation. In addition, more information and consulting services are needed for architects, builders and planners. „On the one hand, many people are not yet aware of the design, technical and construction possibilities of photovoltaics. On the other hand, the legal framework for integrated photovoltaic systems is unclear and in need of explanation,“ the association reasoned.
Training craftsmen
The integration of photovoltaics into buildings also poses a special challenge for the trades. This requires special training and consulting services that can be initiated and implemented in cooperation with chambers of crafts and training providers. (su)
Solar Decathlon Europe 2023 in Bucharest is cancelled
Due to the continuing uncertainty caused by the corona pandemic, the Energy Endeavour Foundation has decided not to proceed with the competition for the best solar architecture.
The Energy Endeavour Foundation (EEF) has cancelled the Solar Decathlon 2023. The competition, in which architecture and engineering students design and present sustainable buildings of tomorrow, was actually supposed to take place in Bucharest in the summer of 2023.
Risk analysed
However, the still ongoing Corona pandemic is still leading to a great deal of uncertainty as to whether the architecture competition can be held safely. After a careful risk analysis and intensive consultations with the host city, the organisers have decided to cancel the decathlon. In addition, the Romanian authorities stopped the financing in view of the risks.
Projects already submitted evaluated
The long-term cancellation by the EEF is necessary because the preparation, also by the participants, is immense and, above all, lengthy. Therefore, the potentially participating universities, faculty advisors and students need to know as early as possible whether the competition will take place or not. Applications already received have been evaluated by the Solar Decathlon Europe 2023 jury. The EDF intends to give priority to one of these teams wishing to participate in the next edition of the Solar Decathlon Europe. (su)
Kioto Solar double glass module receives general building authority approval
Sonnenkraft has received general building authority approval for the frameless double glass modules from Kioto Solar from the German Institute for Building Technology. This means that they are considered to be regulated building products.
Sonnenkraft has announced that the German Institute for Building Technology (DIBt) has approved Kioto Solar’s frameless double glass modules for use in buildings. The institute confirms that the modules meet the standards of DIN 18008. They are thus classified as regulated building products and can be used as laminated safety glass in façades and overhead glazing without further approvals or safety measures. This reduces the time and money spent on planning solar buildings.
Proven suitability
The general building approval (abZ) is issued by the DIBt upon application by the manufacturer or supplier for construction products or types of construction. In order for the institute to be able to assess the suitability as laminated safety glass, experimental tests as well as an expert opinion must usually be submitted to the responsible expert committee of the DIBt. These must show the suitability of the product for the selected application field.
The path to the building envelope is open
Sonnenkraft has taken this path and has proven that the double glass modules meet all test requirements. The company has thus overcome a huge hurdle on its way into the building envelope. „We offer innovative solutions so that, first and foremost, already sealed surfaces can be used to generate photovoltaic electricity,“ says CEO Peter Prasser. „With our double glass modules, halls, terraces, fences, e-carports or even façades can be equipped with photovoltaic modules that not only look good, but also provide energy and save costs,“ he describes some of the intended areas of application. It will be a major milestone for building-integrated photovoltaics (BIPV) when the solar module becomes a common building product, he says. „It will soon be impossible to imagine the architecture of buildings without it,“ Peter Prasser is convinced. (su)
Sunovation uses new coating technology for coloured BIPV modules
With a new type of colour coating, Sunovation can improve the aesthetics of coloured solar modules on the one hand. On the other hand, the company reduces the reduction in performance due to the colouring.
The specialist for building-integrated solar modules Sunovation from Elsenfeld in Franconia has developed a new collection and thus expanded the possible colour spectrum. For this purpose, the company has developed a new type of colour coating for the solar glass together with a colour manufacturer. This is based on pigments that ensure rich colour coverage with simultaneous transparency.
Light split
To achieve this, Sunovation uses the interference of light. The technology is based on the fact that the sunlight hitting the module surface is split up like in a prism. The part of the light that is necessary for colouring is selectively reflected. The rest is transmitted to the solar cells to generate electricity. In this way, Sunovation reduces the influence of the colouring on the performance and efficiency of the solar cells to a minimum. Another advantage: unlike other coloured photovoltaic modules, the solar cells remain invisible in all weather conditions. The modules then also retain their coloured glass appearance from all viewing angles.
Surface efficiency dependent on the colour tone
Sunovation thus not only improves the aesthetics of the modules, but also the efficiency of coloured panels. The colour collection of the new Color Quant series consists of 15 exclusive tones. The modules coated with this colour have an power output of between 140 and 180 watts per square metre. Of course, this depends on the specific colour tone. Here, too, the darker the colour, the higher the efficiency.
Balancing act between aesthetics and performance
A reduction in power output due to the colour design is physically unavoidable. The real challenge is to manage the balancing act between high performance and appealing aesthetics and to reduce the undesirable influence of the colouring on the efficiency of the modules. This has been achieved with the new technology, which is now also used in the unichromatic modules of the E-Form series.
Modules made to customer specifications
Sunovation can produce these modules completely according to customer requirements. For this purpose, the company uses a special process to embed the solar cells into the module. This Sunovation Cell Embedding Technology (SCET) enables the production of precisely fitting modules with individual glass structures. Sunovation can also integrate the diodes into the module and produce the cell layout according to individual requirements. The aim is always to achieve the maximum area efficiency of the photovoltaic modules while at the same time satisfying the customer’s wishes.
Demand for coloured modules for façades is increasing
Generally, these are architects. This is because the E-Form modules are mainly used in solar facades. „In the last two years, we have seen a significant increase in demand from architects and building owners for aesthetically pleasing photovoltaic modules that can also make a relevant contribution to energy generation in the building envelope,“ says Heribert Ley, CEO of Sunovation. „The colour collection Color Quant is therefore very well received by our customers. The first façade projects with the new colour tones have already been commissioned and will be realised in 2022,“ he explains. (su)
Solar timber house wins sustainability prize Watt d’Or
Not only the building material used and the modular basic structure, but also the modern energy concept convinced the Watt d'Or jury. The building generates 50 percent more energy than it consumes.
It is a very special apartment building that architect Walter Schär designed and built with his team from Schaerraum AG. It now stands in Horw in the Swiss canton of Lucerne. The wooden building is based on a modular planning principle and combines flexible spaces with energy efficiency and resource efficiency in both construction and operation.
Solar power from the roof supplies the building
Because the house, which is located directly on Lake Lucerne, was built exclusively with regional wood and thus contributes to the storage of CO2. In terms of energy, it is state of the art. The solar panels on the roof of the building and the carport produce 50 percent more energy than the house consumes. An energy storage system ensures that electricity is available even at times when the solar panels do not supply any energy.
Tiled stove 2.0 in every flat
A large part of the electricity goes into heat production. This is supplied by heat pumps that use earth piles as a heat source in winter. In summer, the direction of the energy flow is reversed. Then the heat pump removes excess heat from the rooms and stores it in the earth piles. To supply the flats with space heating, there is a square module, a „tiled stove 2.0“, in each residential unit. This prefabricated module not only contains the entire facility equipment with heating, cooling and ventilation, but also the bathroom and the kitchen sink.
Heat pump with extremely high coefficient of performance
In addition, there is a sophisticated ventilation system that regulates temperature and air quality. It ensures a pleasant indoor climate throughout the entire flat. By coupling this air-conditioning technology with the energy piles, the heat pump achieves the very good annual performance factor of 7 to 8, which means that it produces seven to eight kilowatt hours of heat with one kilowatt hour of electricity.
The complete energy consumption is monitored, optimised and billed using smart meter technology. This means that the residents also have an overview of their electricity and water consumption at all times.
Rent 20 per cent below average
Despite the modern energy concept and the use of sustainable building materials, Schär is able to keep the rents in the building 20 percent below the local rate. This clearly demonstrates that sustainable construction and building operation with renewable energy is not a reason for rising housing costs. On the contrary: the long-term protection against rising costs and the independence from energy supplies ensure low rents.
Room modules hang in a wooden skeleton
This is also due to the modular concept and the basic structure of the building, which is based on the so-called room grid principle. This is based on a wooden skeleton that stands on a concrete base. It carries the entire load of the building. Flexibly combinable room modules with a standardised dimension are then inserted into the skeleton. Several of these modules then make up a flat. Depending on the number of modules combined, you get flats of different sizes. In the building in Horw, there are 1.5 to 4.5 room flats with 33 to 110 square metres of living space.
Costs easy to estimate
Since the skeleton carries the entire load of the building and this is not transferred via the walls of the flats, these walls can also be moved flexibly – depending on the needs of the residents. Another advantage of the modular principle is that it is very easy to estimate what it will cost in the end, even at the planning stage, emphasises Walter Schär. With this principle and the modern energy concept, he won this year’s Watt d’Or prize in the category Buildings and Space. The Swiss Federal Office of Energy (BFE) has been awarding this prize to sustainable projects for many years. (su)
Naturstrom builds fossil-free heating supply with solar power in Berlin
The new Kokoni One quarter operates completely without fossil fuels. The heart of the system are the fully roof-integrated solar systems that cover the new buildings.
In a project in Berlin, Naturstrom wants to show what the city of tomorrow can look like. In the north of the district of Pankow, the green energy provider is realising an energy concept based on solar power and heat pumps. The roofs of the 84 semi-detached and terraced houses being built on the 23-hectare site are a central component of the entire concept. These will be fully covered with solar modules. The solar roofs, with an power output of between 222 and 323 kilowatts per building, supply the energy for the ecological and communally built Kokoni One neighbourhood in the Pankow district of Französisch Buchholz. They are connected to each other via a separate area network to form one large overall system and are counted centrally.
Heat pumps supply the heating
Most of the solar power is used directly in the neighbourhood. The residents can decide for themselves whether they also want to use it in their flats via a favourable tenant electricity tariff. The solar roofs not only supply the buildings with electricity, but also the 68 heat probes. These extract energy from the ground at a low but constant temperature level of ten degrees Celsius throughout the year. These probes are the source for two central heat pumps. These each consume 50 kilowatts of electrical power and thus raise the temperature from the heat probes to 40 degrees Celsius. They each achieve almost 200 kilowatts of thermal output.
Efficiency standard BEG 55 achieved
The heat pumps feed the usable heating energy into an insulated low-temperature local heating grid, which in turn supplies the individual buildings. In this way, the buildings achieve the construction and efficiency standard BEG 55, which means that they consume 55 percent less primary energy than a reference building as defined in the Building Energy Act (GEG). This enables bank KfW to support the construction of the houses within the framework of the Federal Promotion for Efficient Buildings (BEG).
1.2 kilometre local heating network planned
The local heating network consists of two strings with a total length of about 1.2 kilometres. In summer, the energy flows are reversed so that the network can also be used to cool the buildings. Then excess heat is extracted from the buildings via the heating systems, fed through the network and stored in the ground via the heat pumps and the heat probes. In this way, the amount of solar electricity used on site increases. This self-consumption is further increased by the installation of charging points for electric vehicles. Drinking water preparation is decentralised in each building via electrical flow systems, which are supplied on balance by the photovoltaic systems.
Feeding surplus electricity into the grid
Of course, the neighbourhood is also connected to the supply grid of the city of Berlin. This is because any surplus solar power is fed into the grid. If, for example in winter, the solar power is not sufficient to supply the heat pumps and the buildings, electricity can also be sourced via this grid connection.
Commissioning of the heating system planned for 2023
The new neighbourhood will be built this year. Commissioning of the heating supply is planned for the 2023 heating season. In addition to Naturstrom, which is responsible for the heat supply, the Berlin-based project developer Incept and ZRS Architects are also involved. „The Kokoni One residential quarter already shows how the urgently pending energy transition in the building sector can succeed“, says Sarah Debor, head of department for project development at Naturstrom. „With this, we are providing proof that a climate-positive built quarter with a smart, fossil-free energy concept is possible,“ adds Kyrill Radev, managing director of Incept. (su)
Sunman builds gigawatt factory for lightweight modules
The Chinese manufacturer of flexible and lightweight solar modules has commissioned the first expansion stage with a capacity of 500 megawatts. Another 500 megawatts will be added by June this year.
The manufacturer Sunman has specialised in the production of light and flexible solar modules that do not require glass. The solar cells are embedded between two layers of polymer composite material. Demand has increased to such an extent that the company has now started to expand its production capacity by one gigawatt.
Sunman produces composite material itself
Initially, Sunman commissioned a production capacity of 500 megawatts per year in China. Further production lines with a total capacity of 500 megawatts per year are scheduled to come on stream in early June 2022. The factory not only assembles the individual components to produce modules, but also manufactures the required polymer composite material. In addition, there will be a test centre where the modules are put through their paces after production, as well as a large research department that will work on the further development of the technology.
Building on roofs with low load reserves
As before, Sunman’s target group remains owners of buildings on which normal glass-glass or glass-foil modules cannot be installed because they are too heavy. These are buildings with low load reserves. Another application is façade integration, which is easier than with double glass modules because they do not need approval as glass elements. Sunman also wants to use the modules in vehicles. Here, too, they benefit from their low weight. After all, the lightweight modules bring only 30 percent of the load of a standard module to the scales. In addition, there is the advantage of flexibility, which is not possible with glass modules. (su)
The German Minister of Economics has presented his plans on how he wants to accelerate the energy transition. This includes the use of photovoltaics in buildings and the switch to eco-heating.
Buildings in Germany are to be decarbonised more quickly. Among other things, this is what the new Minister for Climate Protection and Economic Affairs, Robert Habeck, has announced. It is part of accelerating the energy transition in Germany. This includes, among other things, a Solar obligation for non-residential buildings. In residential buildings, however, photovoltaics are also to become the standard and the norm.
Simplifying tenant electricity
He also announces improvements and simplifications for tenant electricity projects. These are a way to use solar electricity on site in apartment buildings as well, thus keeping photovoltaics economically viable not only on the roofs but also in the façades. Among other things, these measures will be part of a solar acceleration law that Habeck wants to present by the middle of this year at the latest. They are part of a strategy to drive the expansion of photovoltaics in Germany from just under 60 gigawatts at present to 200 gigawatts in 2030.
New building standards in planning
The government also wants to push the switch to eco-heating. To this end, the Ministry of Economics, in cooperation with the Federal Ministry of Building, wants to amend the Building Energy Act. A central component of this amendment will be, among other things, a revision of the building standards and the subsidies for efficient buildings.
Heat with at least 65 per cent green energy
The goal is to achieve a significantly lower energy demand in new buildings and after renovation, explains Economics Minister Habeck. Every newly installed heating system must run on at least 65 percent renewable energy. In this way, the Economics Ministry wants to prevent bad investments. Accordingly, Habeck wants to adjust the federal subsidy for efficient buildings. It will flank the new requirements of the Building Energy Act and bring the market into line with these steps by 2025 through efficient incentives. With regard to buildings connected to local and district heating, Habeck wants to decarbonise the heating networks. (su)
Fraunhofer institutes develop solar façade with integrated building equipment
A façade element with a solar module and integrated building equipment is intended to reduce the costs of new construction and speed up the refurbishment of existing buildings. It is currently being put through its paces.
The Fraunhofer Institutes for Building Physics (IBP) and for Energy Economics and Energy Systems (IEE) are developing a new façade module. Both the solar technology and the technical building equipment (TGA) are integrated in this module. The aim is to accelerate the sustainable construction of new buildings as well as the energetic refurbishment and activation of façade surfaces for electricity generation. This is because the modular façade is delivered to the construction site prefabricated and only needs to be inserted into the façade there.
Reducing costs
Due to the high degree of prefabrication, the module also saves construction costs. This is because production can be scaled up. In addition, the installation and coordination effort on the construction site is reduced. This gives investors cost certainty and a clearly defined cost framework.
Drastically reducing energy consumption in existing buildings
The new façade module is not only suitable for new buildings in the context of so-called serial construction, but also for the renovation of schools, office and administrative buildings that were built in skeleton construction. This was common in the 1950s to 1980s. Instead of load-bearing walls, reinforced concrete columns hold up the floor slabs. About 25 to 30 per cent of all office buildings were constructed in this way in those years. „They have a consumption of 3200 gigawatt hours per year. With our EE module façade, consumption can be reduced to 600 gigawatt hours,“ says Jan Kaiser from Fraunhofer IEE. „The low renovation rate of one per cent per year could also be increased by the high degree of prefabrication.“
Rapid refurbishment possible
This is because renovation simply means removing the old façade elements and replacing them with the new storey-high façade modules. According to the researchers, this takes only a few hours and, ideally, the users do not even have to move out during the renovation.
Integrated heat pump
Each module is 1.25 metres wide and 30 centimetres deep. A solar module is integrated on the outside. On the inside, all system components for heating and cooling by means of a heat pump and for ventilating the rooms are housed. For this purpose, a fan convector mounted behind the solar element pulls in outside air through a gap and extracts the heat from it. The heat pump raises the air temperature. Afterwards, the air with the higher temperature is transferred via a fan coil unit to the room behind it as heating energy. If cooling is required, the principle is simply reversed. An intelligent control system manages all the energy flows.
One module for 24 square metres of floor space
Since the complete TGA is already integrated, no new pipes have to be installed inside the building. The façade only needs to have a power connection. This is because sufficient energy is then available for heating and air-conditioning even if the solar module on the outside does not supply any electricity. Each of these modules is designed to supply a room area of 24 square metres. The module is currently being tested and optimised at the Experimental Facility for Energy and Indoor Climate Studies (VERU) in Holzkirchen. (su)
Sunovation supplies optically high-quality solar roof to Moscow
In the Russian metropolis, a former power station was transformed into a modern cultural centre with a solar roof. Sunovation manufactured the modules according to the architect's design requirements.
None other than Renzo Piano has transformed a former coal, oil and gas power station in Moscow into a modern cultural and meeting centre. For this purpose, the old power plant building was completely renovated. The architects placed great emphasis on sustainability – not only during the conversion, but also during operation.
In order to obtain the desired LEED Gold certificate, a large part of the power supply had to be converted to regenerative energies. This is because LEED stands for Leadership in Energy and Environement and is an international categorisation of the sustainability of buildings. To achieve this, the architect completely covered the roof with solar modules – including the dormers and edges.
200 different module sizes and geometries
However, this required special modules with 200 different sizes and shapes in order to adapt them exactly to the existing historical building structure. In addition, the roof was to appear light grey on the outside and white on the inside. Therefore, the manufacturer Sunovation developed and produced these special modules in its factory in Aschaffenburg in Bavaria exactly according to the architect’s design ideas. To achieve the intended colouring for the solar cells, a special printing process was used. On the one hand, this allows for a permanently UV-resistant printing of the cells. On the other hand, the printing concept changes the appearance of the solar cells in the module and allows their edges to blur gently.
20 percent transparency
Sunovation delivered a total of 4,578 modules with a total area of 5,421 square metres to Moscow. Since the solar cells were embedded between the module glass with a larger distance than usual – Sunovation uses a special process for this – the panels allow 20 percent of the sunlight to pass through to the inside of the building. As a result, the rooms are naturally lit during the day.
503 kilowatts of solar power achieved
Both the colouring of the solar cells and this semi-transparency naturally lead to a lower power output of the modules compared to the standard panel. But the power output of 503 kilowatts is still impressive. In this way, the visually outstanding solar roof contributes to the building’s energy supply with a yield of about one gigawatt per year.
Austria: Third innovation award for building-integrated photovoltaics launched
The Austrian award for building-integrated photovoltaics is going into the next round. It will be expanded to include projects that combine transport infrastructure and agriculture with photovoltaics.
The Austrian Photovoltaic Technology Platform (TPPV) has launched the third Innovation Award for Building-Integrated Photovoltaics (BIPV) at the joint congress with PV Austria. This means that the submission period for projects has begun. „We are already receiving many enquiries about this,“ says Hubert Fechner, chairman of TPPV. „It is foreseeable that great projects will compete for the prize.“
Participation criteria widened
The biennial competition takes into account the innovation in the application possibilities of photovoltaics. Therefore, the TPPV is expanding the eligibility criteria. While the prize was previously only awarded for the use of photovoltaics in buildings, projects from the transport and agricultural sectors can also participate in the third competition.
Added value for the city
This is also about innovative systems that can offer added value for the city, among other things, Fechner emphasises with regard to systems that are integrated into the transport infrastructure. „Photovoltaics have the advantage that they can be used in combination with the built environment. This means that electricity is no longer anonymous to the consumer, which further increases the acceptance of the energy transition,“ he says.
Expertise in the service of sustainability
To this end, the TPPV has enlisted the Bundesimmobiliengesellschaft (BIG) to co-host this year’s award. „As one of the largest real estate owners in Austria, we see it as our duty to place our projects in the service of sustainability through technological solutions, planning expertise and architectural quality,“ Hans-Peter Weiss, CEO of BIG, emphasises. „The award for integrated photovoltaics brings forward-looking buildings before the curtain and thus takes a significant step in terms of climate protection!“, he explains.
The requirements for submitting projects, criteria for participation and a timetable of the competition can be found on the PV Austria website. (su)
Fenecon integrates variable electricity prices into its storage systems
With special apps, users of home storage systems can now also optimise their residual electricity consumption. This is because Fenecon's energy management system can react to time-variable electricity prices if the customer wants it to.
The storage provider Fenecon integrates time-variable electricity prices into its solar batteries. With this, the company is taking the next step to further optimise self-consumption of solar electricity in buildings with photovoltaic systems. This is because the first electricity suppliers are already offering flexible electricity prices. These transmit the price signals from the electricity stock exchange directly to the consumer.
Variable electricity prices are on the rise
This in turn allows consumers to coordinate their consumption in a way that they use the most electricity when the price on the stock exchange is low. For this purpose, the providers Awattar and Tibber, for example, use the day-ahead prices. Then the consumer knows 24 hours in advance when the electricity price is low. Stromdao does this via its own green power index. In this way, the electricity customer can shift energy to times when the supply of renewable energy is high. Also in these times, electricity prices are usually lower than in times with a high share of fossil electricity in the grid.
Easy integration of the new function
Fenecon integrates these price signals into the energy management of its storage facilities via special apps. It pays off that Fenecon’s energy management is based on an open source platform. This makes it easy to integrate the new function without much effort.
Reducing costs for residual electricity
The idea is that the storage system can then use the price signals from the stock exchange based on the green power index to cover the consumption in the building at night with grid electricity if the capacity of the storage system is not expected to be sufficient for this. This is because the customer then uses electricity when it is cheap and only covers the energy consumption with the storage system when the price of electricity increases. In this way, the operator of the solar storage system can not only optimise the residual electricity consumption, but also operate his batteries in a particularly grid-serving manner. (su)
Naturstrom builds tenant power project with local energy grid in existing buildings
In the course of renovating a large building complex in the German city of Merseburg, Naturstrom has set up a separate energy grid there. This is supplied with electricity from solar panels and a CHP unit.
Tenant electricity is still a topic for energy suppliers. With a project in the Saxony-Anhalt town of Merseburg, Naturstrom shows how this works in existing buildings, even under the current framework conditions. The company has installed solar systems on several connected buildings belonging to the real estate company Arkade Projekt. Naturstrom is thus giving tenants the option of renewable energy supply with solar power produced on site.
Much potential in existing buildings
Naturstrom is thus activating more roofs for the generation of solar power. This is because most of the roofs in multi-storey residential buildings are still unused. The energy supplier sees the difficult energy-economic framework conditions as the main reason for this reluctance. „We still have a lot of potential, especially in existing buildings, but we also have a lot of catching up to do in the area of photovoltaics,“ emphasises Tim Meyer, member of the Naturstrom board of directors. „Since most of the buildings, especially in the cities, are multi-family houses, complex measurement and billing processes are needed for the direct on-site use of solar power.“
Local energy grid established
The building complex in Merseburg was constructed in 1931. The twelve houses with their 66 flats were first extensively renovated together with the project partner Kolb Ripke Architekten and equipped with their own local energy grid. This grid is supplied exclusively with renewable energy. A large part is solar power from the systems on the roofs of the buildings. Together, they generate 100 kilowatts – the legally permissible limit for tenant electricity subsidies.
Naturstrom is the plant operator
In addition, Naturstrom has installed a heat-led CHP unit that runs exclusively on biogas. This has an electrical power output of 20 kilowatts. The electricity generated by the CHP is also fed into the energy grid of the building complex. The two power generation plants are operated by Naturstrom.
High self-consumption achieved
The planners expect the self-consumption rate of the photovoltaic system to reach 50 percent. The self-consumption of the electricity from the CHP unit will be 70 percent. The tenants will also achieve this high level of use of green electricity on site thanks to the additionally installed charging stations for electric vehicles and integrated electricity storage units that temporarily store the solar and CHP electricity.
Protection against electricity price increases
The entire energy supply is designed in such a way that solar power has priority in consumption by the tenants in order to cover the highest possible share of the electricity demand. The high energy standard keeps the costs for the tenants within reasonable limits. In addition, they are thus protected against future increases in electricity prices from the energy suppliers. „We are pleased to not only offer our residents added value from a climate protection perspective with this conversion to a regenerative energy supply, but also to be a showcase project in the field of refurbishment of existing buildings,“ says Thomas Kolb, managing director of Kolb Ripke Architekten as well as Arkade Projekt. (su)
A survey has shown that one third of the property owners in Germany will definitely invest in a solar system in the next two years. The decisive criterion here is the supply of one's own electricity.
One third of all home owners are planning to purchase a solar system – both for electricity and heat supply. This is the result of a representative survey conducted by the opinion research institute You Gov on behalf of the Agency for Renewable Energies (AEE). „Citizens are increasingly taking on more responsibility,“ says Robert Brandt, Managing Director of AEE. „The phrase ‚We alone can’t do anything‘ is increasingly disappearing from discussions in politics and at the dinner table at home.“
Photovoltaics in the lead
Of the property owners who decide in favour of solar technology, most are again opting for photovoltaics. This is because 14 percent of those surveyed want to purchase a solar power system. A further six per cent are considering a solar thermal system. Ten percent opt for a combination of both technologies.
Market volume: 2.8 million photovoltaic systems
Extrapolating the results of the survey to property owners, 2.8 million of them are planning to install a photovoltaic system. Another 1.9 million homeowners are opting for solar thermal. „An ambitious coalition agreement thus meets with a high willingness to invest on the part of citizens,“ Carsten Körnig, CEO of BSW Solar, explains. „To get the solar express rolling quickly now, the new government must set the right course within its first hundred days.“
Adapt framework conditions quickly
For in order to implement the plans, the new government urgently needs to adapt the new legal framework. With the current regulations, it will not be possible to add 140 gigawatts of photovoltaics by 2030. In addition, half of the heat supply is to be climate-neutral by the end of the decade. „Even if only every second homeowner were to actually implement a solar system, the annual demand for solar technology among private property owners would almost triple compared to today,“ Körnig calculates.
Self-consumption drives the market
The market drivers are above all the rising energy prices, as the pollsters found out. This is because 62 percent of those who buy a solar power system do so because of rising electricity prices. This is why self-consumption plays a central role for 69 percent of future owners of a photovoltaic system. But climate and environmental protection are not forgotten either. After all, 54 percent cite this as a criterion for deciding in favour of a solar system. Other strong reasons for purchasing a photovoltaic system are independence from the electricity supplier, the rising CO2 price and an expected financial gain. Still further down the list of criteria is the combination with e-mobility.
Rising energy prices increase demand
The reasons for deciding in favour of a solar thermal system are similar. For 59 percent of those who decide to do so do so because of the rising costs of oil and gas. But environmental and climate protection are also high on the agenda. As many as 55 percent of those surveyed who opt for solar thermal energy cite this as one of the reasons. But the CO2 price, which, unlike for tenants, is also a factor for homeowners who choose their heating technology, is also having an effect. Other strong reasons are independence from the gas supplier and an expected financial gain. (su)
VDE publishes updated overview paper on lithium ion batteries
The second edition of the Lithium Ion Battery Compendium has been prepared taking into account technological developments. It also contains information on quality assessment and safety of batteries.
The VDE has updated its compendium on lithium ion batteries. The second edition of the joint publication by VDE Renewables, VDE DKE and VDE summarises the most important technical and systemic characteristics of storage technology. The compendium provides an overview of the mode of operation, the materials used and the common cell types. For the second edition, the authors have updated the basic technical data and incorporated expert advice from the first edition from 2015.
Legal regulations and standards covered
In the second part, the authors examine the valid legal regulations and the important standards – divided according to application areas. These range from portable storage solutions and stationary solar power storage to industrial applications and the use of lithium batteries in electric vehicles.
Evaluating quality
The focus is on providing users of the compendium with guidance on how to safely assess the quality of batteries and how to determine whether the battery is safe. The question of what to consider when transporting lithium batteries is also addressed in the current paper. The updated edition is available for free download on the VDE website in German and English. In addition, the VDE also offers a fire brigade information paper on extinguishing lithium batteries in the event of fire. (su)
Switzerland supports solar façades and larger photovoltaic systems
In Switzerland, the tariffs for investment subsidies for solar installations have been changed. In future, Bern will reward the full utilisation of the existing roof area. Solar façades will also receive more support.
With the amendment of the Energy Subsidies Ordinance (EnFV), the Swiss Federal Council has approved the change in subsidy levels for photovoltaic systems. In future, the government in Bern will place more emphasis on larger systems. For this, the fixed basic contribution of the investment subsidy will be lowered from 700 to 300 Swiss francs. In contrast, the part oft the subsidy related to the power output will be increased by ten francs to 300 francs per kilowatt for systems with an installed capacity of 30 kilowatts or more. This will make it more attractive, especially for companies, to build larger solar installations and make maximum use of the roof area.
From 100 kilowatts there is less subsidy
In order to simultaneously reduce the investment subsidy to 30 percent of the costs for the system, Bern is simultaneously cutting the part of the subsidy related to the power output for systems of 100 kilowatts or more by 20 francs.This means that in future companies investing in such large systems will only receive 270 francs per kilowatt – in addition to the basic subsidy.
550 francs per kilowatt for solar façades
According to the Swiss Federal Office of Energy (SFOE), this will free up twelve million francs in subsidies to support the construction of additional systems. These can also be installations on building façades. In order to promote these more strongly, the part of the subsidy related to the power output of the investment subsidy for solar façades will increase to 550 francs. With this bonus of 250 francs compared to a normal roof system, Bern wants to better tap the potential of photovoltaics on building façades. According to the SFOE, this is 17 terawatt hours that can be generated with modules on Swiss house façades. The prerequisite for the higher subsidy is that the modules are mounted at an angle of at least 75 degrees to the horizontal plane.
In force from 1 April 2022
The new tariffs will come into force on 1 April 2022. They will then apply to all systems that start operation after this date, according to the Federal Association Swissolar. The latter supports the new regulation of the tariffs for the investment subsidy. (su)
Multi-family house with white solar elements wins sustainability award
The PlusEnergy house realised this year in Männedorf, Switzerland, has won one of the Green Solutions Awards 2020-21. The prizes were awarded at the COP26 conference in Glasgow. Among other things, the jury was impressed by the solar façade.
Architect René Schmidt has equipped a new apartment building in Männedorf, Switzerland, with all available solutions for regenerative energy supply. In addition to a façade made of reddish-brown solar modules, which is lightened up with white solar elements, an innovative energy concept was implemented. This makes it possible for the residents to pay a flat rate for their entire energy consumption and thus to firmly plan their total energy costs.
Power generation exceeds consumption
This is because just the façade alone supplies 50,000 kilowatt hours of electricity every year. Added to this are the yields from the modules on the roof, which generate another 40,000 kilowatt hours. In addition, the building was equipped with a small wind turbine that provides about 2,900 kilowatt hours of electricity every year. This compares to energy consumption in the form of both electricity and heat in the amount of 75,500 kilowatt hours per year. This means that the building produces more than the residents consume.
Hydrogen for the winter
To compensate for the volatile generation of the solar and wind power plants, a battery storage system was also installed. Surplus electricity, which is mainly generated in summer, is supplied to an electrolyser via the electricity grid. This produces hydrogen, which is used to supply the building with electricity and heat, especially in winter when there is a lot of heating but little solar power.
White solar modules brighten up the façade
This concept convinced the jurors of the Green Solultions Awards 2020-21. The CO2-neutral building receives a special mention in the „Energy & Temperate Climates“ category of the awards, which was presented during the COP26 negotiations in Glasgow. Above all, however, they also appreciated the aesthetic implementation. This is largely determined by the white modules, which were produced with a special foil from the Swiss supplier Solaxess. Since the solar technology behind the foil becomes invisible to the viewer, the modules can no longer be distinguished from passive white façade elements. (su)
Bern allocates 450 million Swiss francs for solar construction in 2022
The SFOE has announced the filling level of the subsidy pot for photovoltaics in Switzerland. It is 20 million Swiss francs less than last year's estimate.
In 2022, 450 million Swiss francs will be available for the support of photovoltaic installations in Switzerland. This was announced by the Swiss Federal Office of Energy (SFOE). In this way, the expansion of photovoltaics can be further stabilised. The SFOE assumes that all operators of installations who register their project by 31 October 2022 will receive funding. This applies both to the small one-off payment (KLEIV), an investment subsidy for systems with power outputs of up to 100 kilowatts, and to the large one-off payment (GREIV). Operators of plants with a power of between 100 kilowatts and 50 megawatts receive the latter.
20 million francs less in the pot
However, the subsidy pot has become smaller compared to last year. After all, 470 million francs were available for 2021. In view of the currently rising prices for modules, there seems to be no growth with the 450 million francs now budgeted. Yet Switzerland would have to quadruple the speed of construction to reach the legally regulated targets, as the industry association Swissolar has calculated.
350 megawatts more capacity on house roofs
But the numbers speak a different language. For the Swiss solar industry can look back on a good result this year. The SFOE assumes that by the end of 2021 all installations that were registered by 31 August of this year will receive a KLEIV. That is about 26,000 plants with a total capacity of 350 megawatts. A total of 150 million francs will be paid out in this segment. This means that the subsidised plant capacity is slightly higher than the SFOE’s estimates from the previous year.For at that time, officials assumed 330 megawatts to be supported with a sum of 270 million francs. So apparently not all the subsidies were called up.
500 large plants built
In addition, 500 plants with a capacity of 168 megawatts will receive a GREIV. Here, the SFOE can reduce the waiting list by the end of the year to applications submitted by 31 October 2021. About 200 million Swiss francs were available for this purpose this year. The SFOE does not state whether these have been called up in full. (su)
Sonnenkraft's solar shed roof, covered with bifacial modules, has won one of this year's Austrian Solar Prizes. The jury of Eurosolar Austria was convinced by the multiple use of the surface.
The module manufacturer Sonnenkraft has won the Austrian Solar Prize for the shed roof covered with photovoltaic modules at its own production site in St. Veit an der Glan. The project was able to prevail in the category in which outstanding solutions for industrial, commercial and agricultural enterprises are awarded. The jurors of the prize, which is awarded by Eurosolar Austria, were particularly impressed by the approach of multiple use of space.
Production capacity expanded
Because Sonnenkraft created the flying roof in order to expand its storage space. This is because the company has expanded the production capacity of Kioto Solar in view of increasing demand. As capacity almost doubled, more storage space was also needed. To create another benefit in addition to protecting the products against the elements, bifacial modules from the company’s own production were fitted directly into the substructure of the shed roof.
Power almost doubled
In this way, an additional solar generator with a power of 160 megawatts has been created. Sonnenkraft has thus almost doubled its solar power generation capacity to 340 megawatts. The company uses the electricity directly in its own production and thus further reduces the CO2 footprint of its solar modules.
An obvious solution
For Sonnenkraft, of course, only such a solution was an option. After all, the company itself manufactures components for photovoltaic systems that can be harmoniously integrated into the building landscape. „We produce energy from Austria for Austria and Europe and see enormous growth potential for photovoltaic modules in domestic production. So what could be more natural than to equip the storage area with double-glass modules manufactured in our own factory?“ explained Peter Prasser, Managing Director of Sonnenkraft, at the presentation of this year’s Austrian Solar Awards. (su)
ASCA widens colour portfolio of organic solar films
By integrating new acceptor material from Nano-C, OPV manufacturer Asca will be able to offer a broader portfolio of colours for organic solar films in the future. Asca and Nano-C have also agreed to work more closely together.
Organic photovoltaic (OPV) manufacturer ASCA has expanded the colour portfolio of its solar films. For this purpose, the company has integrated new acceptor materials. These new materials are responsible for the colouring of the films. Asca gets these from its long-standing partner Nano-C.
Colours in demand by architects
Nano-C has developed new electron acceptors for the organic semiconductor layers. These are based on fullerenes. These are hollow carbon-based molecules. The carbon atoms are arranged in many pentagons and these pentagons are in turn connected to each other. This makes them look like a football and their electronic properties make them very suitable for OPV applications. Nano-C’s new fullerene-based electron acceptors can be easily processed in a roll-to-roll process and enable the production of grey OPV modules. ASCA has chosen this colour because of the increasing demand for them in the architectural and construction industries.
ASCA and Nano-C sign partnership agreement
In order to further strengthen the cooperation in the long term, the two companies have now concluded a partner agreement. Together, ASCA and Nano-C want to meet the increasing demand for organic solar cells and their components. „The partnership agreement naturally has a positive effect on the material costs of our products,“ explains Sebastian Meier, responsible for corporate development and partner management at ASCA. But the company also wants to secure its supply chain with stable partnerships. Because that way ASCA can continue to scale production and keep up with the market.
In addition, the agreement also contains a technological component. The partners have decided to intensify their joint research and development activities. This means that future, novel materials from Nano-C will also be part of the agreement, in order to investigate and improve their suitability as acceptors in OPV components. (su)
Change to regenerative heating is becoming increasingly worthwhile
With the change to renewable energies for heating, house inhabitants can be secured against rising costs. How these costs rose in the past year in Germany, shows the current heat mirror of CO2 Online.
The switch to renewable energies for heating is becoming more and more beneficial. That is the conclusion of the analysts of the consulting firm CO2 online in view of the results of the current heat mirror, which they have provided. The heating mirror quantifies the situation of the heat supply in the existing buildings in Germany. For this purpose, the analysts evaluate more than 147,000 data records from centrally heated residential buildings throughout Germany. They can thus provide an overview of the average costs that a household has to spend on heat supply.
Cost increase for all technologies
According to the study, the cost of providing space heating for an apartment with 70 square meters of floor space in the 2019 heating season was 720 euros if it is heated with natural gas. This is an increase of 2.9 percent compared to the previous year. Also the costs of the heat supply with fuel oil increased in the past heating season by one per cent to 855 euro. However, an even greater increase was recorded for buildings supplied with district heating. Here the inhabitants of the reference apartment had to pay 890 euro. That is 3.5 percent more than in the year before.
Heat pump only just behind natural gas
With 7,3 per cent the inhabitants of buildings with heat pump systems had to accept. However, the nominal costs of 753 euros were still lower than most fossil heating systems. Only natural gas is cheaper. That is above all because of the electricity costs with their high part of taxes and fees, which rose by 3.8 per cent – a circumstance, which the German Heatpump-Association criticizes already longer. It demands fair taxation of heat pump electricity and natural gas so that, for example, the climate impact of the fossil fuel is included in the costs. For the first time the analysts of CO2 Online also took up pellet heaters to their cost evaluation. Here, the residents of the buildings examined have to pay an average of 590 euros – based on the reference apartment with 70 square meters of floor space.
CO2 costs for fossil fuels implemented
As reason for the costs risen over all technologies CO2 Online calls apart from the risen costs of district heating and heat pump electricity also the cooler weather. In the next heating season, the CO2 price will be added, which will be charged from 2021 on for greenhouse gas emissions also from building heating systems. This will naturally have less impact on buildings heated with renewable energies, as they will not have to pay the CO2 fee.
Renovation reduces costs
In addition, there are also the grants, which in Germany support the switch to regenerative heating systems with a subsidy of up to 45 percent of the investment costs. A further component for the lowering of the heating costs is the energy-efficient modernization of buildings and the active production of heating energy on site. Because inhabitants of an average apartment in renovated buildings pay up to 545 euros less for heating than those in unrenovated buildings, the analysts from CO2 Online have found out. „Energy-efficient building renovation and optimization of existing buildings are the slumbering giant for energy saving and climate protection,“ explains Tanja Loitz, Managing Director of CO2 Online. „In order not to place an additional burden on tenants, renovations should be carried out in a way that is neutral to warm rents,“ adds Melanie Weber-Moritz, Director of the German Tenants‘ Association DMB. „Because only owners can modernise the heating system and thus create the conditions for lower consumption. By conscious heating and ventilation also tenants can save slightly, however a transparent account of heating costs with the correct specification of the individual consumptions is elementary for it. (su)
Garbe integrates organic solar films into the façade of a logistics hall
The real estate company Garbe has equipped a logistics hall in Berlin with organic solar foils from Heliatek. The decision was made to use this technology because a normal solar installation was not possible.
Garbe Industrial Real Estate has equipped a logistics hall in Berlin with organic solar films from Heliatek. The installers from the Hamburg-based photovoltaic system installation company Adler Smart Solutions attached 546 elements made of organic solar films to the façade of a logistics hall in Marzahn, a district in the north-east of Berlin.
Garbe Renewable Energy (Green), the subsidiary of Garbe Industrial Real Estate responsible for the company’s sustainability strategy, opted for this solution because the roof area could not be used for photovoltaics. This is because the residual load-bearing capacity was not sufficient to install normal solar modules on it.
Lightweight for all buildings
However, with the integration of organic solar foils from the Dresden-based manufacturer Heliatek, it was possible to bring the building up to the current state of the art in terms of energy. „The cooperation with Heliatek offers us the potential to open up additional space for the generation of electricity from renewable energies,“ says Mathias Wasko, Green’s managing director, explaining the decision to go for this solution. „The innovative properties of the solar films, thanks to their low weight of less than two kilograms per square metre and easy application with the help of the integrated adhesive on the back, make it possible to integrate photovoltaic solutions even on buildings that are not suitable for conventional photovoltaic systems. However, they also form a useful complement to photovoltaic roof systems to increase the electricity yield.“
Limitless possibilities
The advantage of organic solar films is their low weight and the almost unlimited possibilities in colour, shape and size. This is because they are either printed directly onto a substrate of choice or they are integrated into or onto other construction elements. But they are not only flexible with regard to the type of integration, but also mechanically. This is because the semiconductor material is usually printed on a flexible plastic substrate anyway, using the inexpensive roll-to-roll process.
This expands the application possibilities. „Our solar films thus make it possible to generate solar power precisely on those surfaces where conventional solar solutions reach their limits due to their weight or the substrate,“ knows Guido van Tartwijk, CEO of Heliatek. „Organic solar technology will help achieve the Green’s ambitious goals and is an important step towards a CO2-neutral future,“ he is certain.
Test yield for a year
Because Green wants to equip more properties in the Garbe portfolio with the solar films. The system in Berlin-Marzahn is only a first pilot project with which the property manager wants to show what contribution the organic solar foils can actually make over the course of a year to the power supply of buildings with low load reserves on the roof. Garbe Renewable Energy also hopes to establish long-term partnerships with Heliatek and Adler in order to achieve the property company’s ambitious climate protection goals in the medium term. (su)
Vienna seeks to speed up energy refurbishment in the city
The City of Vienna has launched a new quality platform for renovation partners. It connects homeowners, planners and craftsmen in order to realise renovation projects together.
Vienna has set itself the goal of heating all buildings in the city without fossil fuels by 2040. This primarily concerns the end of gas boilers in the basements of existing buildings. Some of the buildings are to be connected to the district heating supply. The remaining buildings, in turn, are to be heated with renewable energies. For this, an speeding up of the refurbishment of the existing buildings is urgently needed.
Finding partners
To facilitate this, the city has now created a communication platform. The aim of the „Quality Platform for Renovation Partners“ is to bring together planners and craftsmen on the one hand with homeowners and housing associations on the other. After all, the platform’s credo is that Vienna can only achieve the city’s energy and climate goals with high-quality energy renovation. That is why homeowners who want to carry out a renovation can find suitable partners on the platform. An advantage here is that Vienna now also promotes the planning of a renovation and not only the system technology and its installation. Thus, there is a subsidy of up to 5,000 euros per project for the preparatory planning, whereby the subsidy is limited to 50 percent of the proven planning services.
Focus on quality and climate protection
To find the right partner, providers can present their previous projects on the website. This allows them to demonstrate their competencies and approaches. Quality is the focus here, along with the effect on climate protection. But the platform can also be used by the various trades to exchange information and find partners themselves who offer additional services. The website, which will be expanded in the coming weeks, provides concrete information on what the city values when looking for renovation partners. It also links to Hauskunft, an counselling centre for the subsidisation of energy-efficient renovation in Vienna. (su)
Project in Berlin shows climate-positive living at a low price
A new neighbourhood with 42 flats was built in the city of Berlin. The realisation focused on climate protection and low rents as a combination.
The property company Klimagut Immobilien has realised a sustainable quarter in Berlin in cooperation with Peter Ruge Architects and the Berlin Energy Agency (BEA). The construction and also the operation of the two buildings in Schleizer Straße in the district of Lichtenberg are based on a specially sustainable approach. „Starting with the use of particularly high-quality and durable building materials, through the climate-positive energy supply from 100 per cent renewable energies, to the wooden hybrid construction method: This project is exemplary in terms of both construction and operation,“ emphasises Fabian Tacke, CEO of Klimagut Immobilien. „More climate protection in the building sector is hardly possible at the moment.“
Solar system on green roof
At the heart of the completely renewable energy supply are photovoltaic systems on the green flat roofs of the two houses. „Photovoltaics paired with a green roof is an ideal combination in cities to generate more clean electricity in a decentralised way and at the same time create more vegetated areas for a better urban climate,“ says Michael Geißler, CEO of BEA. The green roofs also acted as a natural air conditioning and thermal insulation for the building.
Tenant power concept implemented
The solar electricity is consumed directly on site. This is because BEA has implemented a tenant electricity concept in which the residents of the buildings can buy the solar energy together with green electricity from the grid at a favourable price. „With our tenant electricity offer, we are around 20 per cent cheaper than the local basic supply tariff,“ said Michael Geißler.
Biogas for heat supply
According to BEA, the heat costs are also well below the usual market level. The heat is generated by a combined heat and power plant (CHP) that runs entirely on biogas. The biogas, in turn, is produced exclusively from residual materials, so that no agricultural land is lost for this purpose. THE CHP also provides electricity for the buildings in the darker autumn and winter months. In this way, the two buildings become net zero-emission houses. Because they actually save more CO2 during operation than they emit. „In Schleizer Straße, we have incorporated many decentralised climate protection technologies that are currently available to us as an energy supplier and service provider,“ says Michael Geißler, summarising the innovative approach that was implemented in the project.
Charging points for electric cars installed
The concept includes not only the supply of electricity and heat, but also climate-friendly mobility. For this purpose, charging stations for electric vehicles were installed in front of the buildings, which are also supplied with solar power from the roof. „Schleizer Straße is a successful showcase project that demonstrates that climate-positive living is feasible through intelligent networking of building and energy technology,“ Geißler points out. „In addition, we also placed special emphasis on social compatibility and integrated affordable rents and energy prices, assisted living, accessibility, space efficiency and a balanced mix of tenants into our concept.“
Enabling affordable rents
A total of 42 rental flats were built in Schleizer Strasse. All flats are accessible without barriers and can be used without barriers to a large extent. „From the very beginning, the goal was to plan the various desired flat types and sizes in a compact way, thus enabling affordable rents and minimising the consumption of resources,“ says Matthias Matschewski, partner at Peter Ruge Architects. In addition, no critical building materials such as PVC, halogens, polystyrene and aluminium were used. (su)
The Helmholtz-Zentrum Berlin has clad one of its buildings with a solar façade. The installation not only demonstrates the aesthetic possibilities of BIPV, but is also a research project.
The Helmholtz-Zentrum Berlin (HZB) has commissioned a large building-integrated solar façade on one of its research buildings. The system is not only part of the building envelope of the testing hall in Berlin’s Adlershof district in the south-east of the city. It is also a research project. Because the installers from the Swiss company Active Solar, who integrated the modules into the building skin, installed a lot of sensors.
Investigating the behaviour of the solar façade
A total of ten irradiation sensors are installed in the three façade sections that were solar-activated. These measure the solar radiation that hits the façade at various points. In addition, 72 temperature sensors are glued behind several modules. Flow sensors were also glued behind four modules to measure the vertical rear ventilation speed. A weather station was also installed on the roof, which records all important parameters, including the values for direct and indirect irradiation, every quarter of an hour. The HZB scientists want to use the data to find out how ventilated solar façades actually perform and what yields can be expected under specific conditions.
Solar modules combined with aluminium elements
The planners from DGI Bauwerk Gesellschaft von Architekten have also realised an outstanding project from an aesthetic point of view. The research hall with the solar façade consists of a cubic structure with a length of 62 metres and a width of 16 metres. This was clad in parts with a silver-grey aluminium façade. On the north side, the architects decided to use blue aluminium elements for part of the façade.
The rest of the building envelope is clad with blue solar modules. These are positioned about 50 millimetres out in front of the silver-grey aluminium elements. Each solar module is factory-fitted with a backrail to which the panels are mounted in the façade construction. Even part of the north side was fitted with solar modules, which is also an aspect of the research project.
Colouring creates a special effect
The modules consist of laminated safety glass. The rear glass pane is coated with a CIGS semiconductor material. The front glass pane has a Kromatix coating on the inside, which is responsible for the colouring. This creates an additional effect. The blue tone of the modules varies depending on the viewing angle and the sunlight.
You can read a detailed report on the solar façade on the HZB research building in Berlin in the March edition of the trade journal photovoltaik. Subscribers can read the article online on the photovoltaik website in the edition archive. You can also order the edition as a single issue. (su)
Onyx Solar realises one megawatt photovoltaic façade
Spanish BIPV specialist Onyx Solar is building a giant solar façade as part of the refurbishment of the Sterling Bank headquarters in Lagos, Nigeria. This is already the second lighthouse project in Africa that the company is implementing.
The Spanish project developer of building-integrated photovoltaic systems, Onyx Solar, will install a giant solar façade in the Nigerian metropolis of Lagos. In the course of the renovation of the Sterling Bank headquarters in Nairobi, Onyx will install a total of 3,250 crystalline solar modules in the façade. The power plant, with an area of 6,500 square metres, will achieve a power of about one megawatt.
Solar skylight in Nairobi
With this project, Onyx Solar is not only implementing a lighthouse-project with a view to sustainable building renovation. The company is also taking a further step towards developing the market for BIPV in Africa. Onyx has been active there for some time. The company has already realised a showcase project in Kenya’s capital Nairobi. There, semi-transparent modules were used to transform the roof of the I&M Bank into a solar skylight. To do this, the project planners from Onyx inserted 2,200 square metres of modules with amorphous silicon as the semiconductor and with varying degrees of transparency into the roof.
Microsoft gets solar building envelope
Nairobi will also be the site of Onyx Solar’s next BIPV project. There, the software company Microsoft is planning the renovation of its branch office, whereby the building envelope is also to be solar-activated.
Germany's big cities are still giving away huge potential for the development of solar energy in new buildings. Too few buildings are being built with photovoltaic systems.
The 14 largest cities in Germany are still giving away their potential for the solar energy transition. This is because too many buildings are still being constructed without photovoltaic systems. This is the result of the current solar check prepared by the green energy provider Lichtblick. The company calculated the solar factor for the cities surveyed. This is the ratio between the area of newly built solar systems and newly built roof area.
Winner Essen – Loser Hamburg
The result of the calculation: in eight of the 14 cities surveyed, the solar factor is below 30 percent. The regional differences are enormous. For example, the solar factor in Essen is 62.9 percent. In Cologne, on the other hand, it is only 47.2 percent. This puts the cathedral city just ahead of Leipzig with a solar factor of 46.5 percent.
Hamburg brings up the rear with a solar factor of only 10.3 percent, although this could change with the introduction of the Solar obligation in 2023, as the authors of the Solarcheck 2021 predict. This puts the Elbe metropolis just behind Frankfurt am Main, where the factor is 11.8 percent. But Berlin is also at the bottom of the field with a solar factor of a modest 14.9 percent.
Property developers do build solar installations
For the Solarcheck 2021, the 14 largest German cities – all with more than 500,00 inhabitants – were examined to see whether they were exploiting their solar potential. In doing so, they not only determined the city ranking, but also found out that the solar factor is particularly low where there is a lot of new construction.
This means, conversely, that for most developers, photovoltaics on the roof or even in the façade still do not play a role. „Roofs are the green power plants of the future. Here, climate protection can be realised affordably and close to the consumer. Municipalities and property developers urgently need to accelerate the solar energy transition on Germany’s roofs,“ demands Ralf Schmidt-Pleschka, Climate and Energy Policy Coordinator at Lichtblick.
Few large-scale installations distort the result
After all, the solar factor across all cities rose slightly from 26 to 29 percent compared to the previous year. But the survey also revealed a distortion. The authors emphasise that it is also striking that a good solar factor is often due to the construction of a few large roof systems. In Leipzig, Bremen, Dortmund and also in Essen, for example, it was sufficient to cover more than half of the total addition of solar systems with one large system with a capacity of at least 100 kilowatts. Solar modules on new single-family or multi-family houses or smaller commercial buildings tend to be the exception even in the well-placed cities.
Too little solar power for city residents
This also means that the big cities with millions of inhabitants in particular are missing out on enormous opportunities. In Berlin, for example, it would be possible to supply 19,311 households with solar power if all builders had equipped their new buildings with a photovoltaic system in 2019 alone. However, the systems actually installed this year supply only 2,880 households. In Hamburg, the ratio of potential to realisation is 11,962 to 1,232 households, in Munich 11,181 to 1,755.
Plea for solar obligation?
For Ralf Schmidt-Pleschka, these results are a clear signal in favour of solar obligation. „The solar subsidy is not nearly as effective in the metropolises as would be necessary to achieve the new climate goals,“ he says. „The next federal government should therefore introduce a nationwide solar obligation for new buildings. The regulations planned so far by some federal states such as Hamburg, Berlin or Baden-Württemberg for a solar obligation currently still resemble a patchwork quilt.“ (su)
Sonnenkraft builds a giant shed roof at its own site in Carinthia
The module manufacturer from Austrian town of St. Veit an der Glan has expanded its production building with a solar-roofed storage area. In doing so, Sonnenkraft has paid attention to aesthetics and high yield.
The manufacturer of solar and heating technology Sonnenkraft is building a large solar shed roof at the site of its module production. This is cantilevered onto the south-west façade of the production building and is designed in the form of a monopitch roof. The roof construction is made completely of wood and is covered with 800 semi-transparent, bifacial double glass modules from the own production of Kioto Solar – Sonnenkraft’s module brand.
Module production with own solar power
With the shed roof, Sonnenkraft not only creates additional storage space. The company uses the electricity from the modules directly in the production of solar panels and fresh water stations. Together with the large 500 kilowatt system on the company roof and the e-carport next to the building, Sonnenkraft can cover three quarters of the production at the site in St. Veit an der Glan with its own solar power produced locally.
The new solar covering of the roof alone, with an area of 1,650 square metres, supplies 325,000 kilowatts of solar power every year. This is also thanks to the bifacial solar technology used. This means that the modules also harvest the sun’s energy on the back and convert it into electricity.
Daily modules for 300 self-consumption systems
In this way, the company achieves that the CO2 footprint of the modules it produces becomes smaller and smaller. In addition, Sonnenkraft obtains a storage area that is self-financing. This is because the solar power from the newly installed modules reduces the amount of electricity the company has to purchase from the grid and thus also the operating costs for the production facility in Carinthia. The storage area became necessary because Sonnenkraft is currently doubling its production capacity of solar modules from 180 to 340 megawatts. The company will then be able to produce 3,000 modules every day. In purely mathematical terms, that is enough panels to build 300 self-consumption systems every day.
Solar roof was an obvious choice
Originally, a construction with tarpaulins was planned. However, the company quickly abandoned this idea because it was not an optimal solution in terms of durability and design. „We produce energy from Austria for Austria and Europe and see enormous growth potential for photovoltaic modules in domestic production with quality. So what could be more obvious than to equip the storage area with double-glass modules manufactured in our own factory?“ explains Alfred Mölzer, Managing Director of Sonnenkraft, the decision.
Using already covered areas
With the installation, Sonnenkraft also shows an innovative idea of how solar modules can be installed as beautifully and intelligently as possible. Above all, Sonnenkraft also shows how previously unused surfaces such as façades, car parks, warehouses and roofing can be put to better use. „We offer innovative solutions so that, first and foremost, already covered surfaces can be used to generate photovoltaic electricity,“ emphasises Peter Prasser, Managing Director of Sonnenkraft. He points out that Kioto Solar’s double-glazed panels can be used to equip terraces, fences, e-carports or even façades with photovoltaic modules that supply energy and save costs. (su)
PV Austria organises PV and storage conference in Vienna in October
The Federal Association PV Austria and the Austrian Technology Platform Photovoltaics are organising this year's Solar and Storage Conference in October. The next competition for outstanding BIPV projects will also start at the conference.
On 13 and 14 October 2021, the Austrian photovoltaic, storage and energy industry will meet in Vienna. This year’s conference, organised by PV Austria and the Austrian Photovoltaic Technology Platform (TPPV), will focus on the latest technological developments on the one hand and new business models resulting from the Renewable Energy Expansion Act on the other.
Energy communities – presenting practical implementation
The central business model that will accelerate the expansion of photovoltaics, also in cities and municipalities, is the possibility for several households and companies to jointly consume the solar electricity from one installation. The speakers will explore the question of whether these energy communities will actually revolutionise the energy market. With the help of first practical projects, they will also show how the energy communities function and how their plants can be integrated into the electricity system.
New storage technologies and hydrogen as a trend
Technological development is not only about current research results. The speakers also point out the trends in which photovoltaics and the storage of solar electricity will develop. In the case of the latter, it is not only electrochemical short-term storage that is increasingly being discussed. Rather, the topic of hydrogen as a long-term storage of solar electricity is becoming increasingly important. In addition to the possibilities that hydrogen offers for the energy system, including in buildings, Fronius and the City of Vienna will present their experiences with concrete hydrogen projects.
Application for the BIPV Award starts
But building-integrated photovoltaics is also on the programme again this year. Several outstanding projects will be presented and the technical possibilities of integrating photovoltaics into the building envelope will be explained. In addition, the application phase for the competition for the best BIPV projects, which will be awarded in 2022, will start at the conference.
Hybrid conference – face-to-face and online attendance possible
The conference will take place on 13 and 14 October 2021 on the campus of the Allianz Stadium in Vienna. However, interested participants can also take part online. The entire conference will be streamed via the PV Austria website. Online participants will be able to virtually explore the interactive conference and the exhibitor sites and actively participate. The complete programme can be found on the PV Austria website. There you can also register for the conference. (su)
Restart 2021: We present live from the trade fair studio
The smarter E Europe: At the beginning of October, the most important industry trade fair of the pv- and storage industry will return with a Restart, on a smaller area. Numerous innovations are expected there. Two innovations stand out: Hydrogen also for buildings and the new PV Guided Tours@The smarter E Europe.
The end of the lockdown is in sight, slowly the return to normality seems possible. Admittedly, the Smarter E Europe trade fair was cancelled in June. However, there will be a reduced edition from 6 to 8 October 2021, a restart in six halls at the Munich exhibition centre.
Hydrogen also for building supply
For the first time, the trade fair will take up the topic of hydrogen and present it in a separate area. Supported by trade associations of the still young hydrogen industry, the main focus will be on green hydrogen from wind power and solar energy. The spectrum of topics ranges from Power2Gas and electrolysis to storage technology, fuel cells and the use of hydrogen as an energy carrier not only in mobility but also in building supply.
Follow the restart live
The trade media photovoltaik, PV Europe and ERNEUERBARE ENERGIEN will support the Restart in a special way. Video teams will swarm out on all three days of the fair to document the companies‘ innovations and broadcast them live from the fair studio via the internet.
The popular guided tours of the Fair will not yet be possible this autumn. This is because special hygiene regulations from the health authorities still apply. Nevertheless, we can take all those at home to the fair: The videos of the PV Guided Tours@The smarter E Europe will be posted online immediately after filming is completed. In this way, we open up the exhibition halls to a much wider and international audience than the limited presence on site would allow.
CEO Talk: exciting interviews
In addition, with the new video format CEO Talk, the trade media offer exciting interviews with important players in our industry and track down new trends. Thus, The smarter E Europe turns into a mix of personal meetings on site and virtual participation – in German and English.
In 2020 and 2021, the editors were tirelessly on the road with their PV Guided Tours to introduce solar industry professionals to the latest innovations – despite cancelled trade fairs and events.
More than 500k viewers
The videos of the PV Guided Tours 2019, 2020 and 2021 have been clicked on more than 500,000 times so far. Youtube only counts the direct hits. Embedded videos are not counted, so the number of unreported views is probably considerably higher.
Of course, the number of views grows over time. In other words, the longer the videos are online, the more often they are viewed. This has to do with the distribution mechanisms of the search engines on the internet. But not only that. The trade media support the videos on their social media channels and also on the architecture portal Solar Age, and use them permanently on their website and in the newsletters.
Finding and addressing the target group
Putting a video on the internet does not necessarily mean that it will find its audience. For that, a strategy is needed and the entire range of online media must be mastered. This has obviously been achieved.
The figure also shows that media behaviour is changing. With the PV Guided Tours, it was obviously proven that complicated technical content can be conveyed to experts in an entertaining way.
Now phototvoltaik, PV Europe and ERNEUERBARE ENERGIEN are planning the PV Guided Tours@The smarter E Europe at the Restart in October. It will be an exciting three days, that’s for sure. Curtain up, let the show begin!
Symposium on Solar Architecture takes place in Zurich
On 14 September 2021, Swissolar and TPPV will organise the third Solar Building Symposium. Participants will gain an insight into the latest developments in BIPV and the urban planning of the future.
For the third time, the Swiss Photovoltaic Association Swissolar and the Austrian Technology Platform Photovoltaics (TPPV) together with other partners invite to the Symposium Solar Building. The congress on solar architecture and urban development of the future is again planned as a face-to-face event this year, after the second symposium was held as an online event due to the corona pandemic.
Participants can expect an exciting programme on building-integrated photovoltaics (BIPV), the planning and implementation of modern building technology and on site planning to protect and improve the urban climate. For example, the organisers were able to win Rune Grasdal from the internationally renowned architectural firm Snøhetta to report on his approach to powerhouses as a sustainability model for the future of working spaces.
Project reports allow deep insight into BIPV
The programme also includes other project reports on outstanding BIPV objects. Urban planning of the future is on the agenda in the afternoon. Then, on the one hand, it will be about sustainable residential construction without CO2 emissions in operation and, on the other hand, about the self-sufficiency of small area networks in neighbourhoods. A panel discussion on the opportunities of cross-area energy planning will round off this part of the programme.
New BIPV materials
In the third part, the speakers will present their research results on solar architecture and draw a conclusion for the future of building. In addition to building design with solar-active materials, they will also discuss the renovation of existing buildings to solar houses and the development of multi-functional façades with organic photovoltaics.
Participation both in person and online
The symposium will take place on 14 September 2021 on the campus of the Swiss Federal Institute of Technology (ETH) in Zurich. It is basically planned as an in-presence event. However, the organisers also offer the possibility of digital participation in the form of a livestream. Should the epidemiological situation deteriorate, the symposium will take place completely as an online event. In this case, participants who have booked presence participation will be refunded the additional price compared to the livestream ticket or can cancel their participation. The complete programme and a link to registration can be found on the Swissolar website. (su)
The Austrian Ministry for Climate Protection is making another 20 million euros available for the construction of private and commercial solar arrays. The bridging until the start of funding under the Renewable Energy Expansion Act is urgently needed.
The Austrian Ministry for Climate Protection, Environment and Energy (BMK) has increased the funding budget for small solar installations. The subsidy is aimed at private households and small businesses that install a PV system with a capacity of up to 50 kilowatts. They receive an investment grant of 150 to 250 euros per kilowatt of installed capacity, depending on the size of the system.
20 million euros additionally approved
Climate Protection Minister Leonore Gewessler (Greens) has thus refilled the subsidy fund in time before it runs out completely. Now an additional 20 million euros are available for new projects as a bridge until the new funding under the Renewable Energy Expansion Act (EAG) begins.
Uncertainty removed
This bridging is of enormous importance for the sector in Austria. „This year’s subsidies have been almost completely drawn down. Accordingly, there was a lot of uncertainty in the last few weeks, which posed a great challenge to installers and potential system operators,“ says Vera Immitzer, CEO of the Federal Association PV Austria. „Therefore, the increase demanded by the PVA was unavoidable. With the increase that has now taken place, those private individuals as well as small and medium-sized enterprises that still want to rely on renewable energy from solar power in the course of the summer can implement their installations.“
Continuity for craftsmen
The increase in the subsidy was necessary because the adoption of the EAG and the related regulations had been delayed. „Until the EAG can come into force, we see the increase in subsidies that has now taken place as an important step towards climate neutrality and as a logical consequence to ensure continuity in the expansion of photovoltaic systems up to 50 kilowatts,“ emphasises Gernot Schröck, division manager at the trading company Siblik SmartHome & Renewable Energies. „Simple, unbureaucratic and continuous funding is important and creates planning security for the implementation of our photovoltaic and storage projects,“ Daniel Nauschnegg, Managing Director of Energietechnik Nauschnegg, adds the view of the system installers. „The customers as well as we as a company can now continue planning.“
Kioto Solar doubles production capacity
But also for the module manufacturers, continuous support and thus continuous installation is important. „We will soon double the existing module production to be able to cover the enormously increased demand for innovative modules,“ says Peter Prasser, Managing Director of Kioto Solar from St. Veit an der Glan in Carinthia. „In order to further expand Austrian production and trained craftsmen, continuous framework conditions must be in place – among other things, this top-up ensures that.“
Promotion under the EAG must start soon
Nevertheless, the start of promotion under the EAG must not be left too long in coming, industry representatives warn. „It can be assumed that the trend of the last few months will continue and that the newly contributed funds will also be called up within the next few months,“ they predict. After all, the annual increase in solar power capacity must be tripled to 1.1 gigawatts in order to achieve the federal government’s targets.
Armor and BGT realise glass balustrade with organic solar elements
In Stuttgart, Armor Solar Power Films and BGT Bischoff Glastechnik have clad an apartment building with organic solar cells. BGT added the organic solar safety glass to its regular portfolio.
In Stuttgart Möhringen, the architect of an apartment building has equipped the new building with a new technology. This is because a glass balustrade covers the entire façade on all four floors. This was realised with laminated safety glass. In turn, organic solar cells were laminated between the two panes of glass.
Solar cell becomes part of the design
Organic solar cells differ from the more widely known crystalline technology in that inorganic silicon is not used as the semiconductor. Rather, the semiconductor material consists of long-chain hydrocarbons. These are applied as a wafer-thin film to an almost random carrier material and can thus be further processed as a semi-finished product. The advantage is that the organic solar cells are flexible and can easily be produced in any size and shape. As a result, they can also be quickly and easily integrated into any glass format and into any façade. „We can produce any shape of solar cell and thus become part of the architecture and design,“ explains Hermann Issa, responsible for business development and project management at ARMOR Solar Power Films (ASCA).
Organic solar safety glass in the portfolio
The company from Kitzingen in Franconia produced the organic solar films for the project in Stuttgart. BGT Bischoff Glastechnik from Bretten near Karlsruhe integrated these into the glass modules that now form the balustrade of the building in Stuttgart. This is BGT’s first project with the new organic glass modules, which the company now basically has in its portfolio and offers to its worldwide customers.
Armor handles the system integration
The planning system integration of the organic solar modules is again being handled by Armor ASCA. This means that the company plans and installs everything from cable routing and connection technology to the inverter. In the ideal case, the electricity produced with the solar modules is consumed directly on site. Only if this is not possible can it be fed into the grid.
Visible from the outside, transparent from the inside
The organic solar modules provide the glass balustrade with visual protection from the outside, while it remains transparent from the inside. „With the glass balustrades, Armaor ASCA closes a gap in façade construction,“ emphasises Martin Sulzer, Head of Technical Sales at BGT. „For the first time, safety glass of high-rise buildings can also generate energy. Because the modules also have an attractive appearance and, thanks to their technical properties, there is no complete loss of power even in the case of partial shading, they are ideally suited for façades,“ Sulzer describes a key advantage of the technology. (su)
You can read more about the possibilities and advantages of organic photovoltaics in the current Handbook on Solar Architecture, published by VDE Verlag.
Office building with solar-active prefabricated elements being built in Stuttgart
Drees & Sommer is constructing an office building in Stuttgart with innovative prefabricated elements. These not only include sustainable insulation materials, but also solar modules.
The consulting and planning company Drees & Sommer is building a new company office block. Several solutions are being used that will put the construction and architecture of the future on a new footing. In addition to Building Information Modelling (BIM), the company is also using new modular façade elements. These were developed by the façade construction company FKN Fassaden together with Drees & Sommer.
New technology for the building industry
On the one hand, they are intended to reduce energy consumption to a minimum – and not only when the building is in operation. That is why the façade elements were designed to be space-saving and in accordance with the principles of material cycle planning. On the other hand, they also generate energy themselves. Because the outside of some of the façade elements consists of photovoltaic modules. At the same time, the elements meet the high requirements of noise insulation. „Trying out future technologies in construction ourselves and thus gaining important insights for client projects is the claim we are pursuing with our new building,“ explains Steffen Szeidl, Drees & Sommer Executive Board Spokesman. „This also is the case for the façade.“
Efficient use of space
With the combination of energy efficiency, solar power production and noise protection, the company wants to counter the current trend in conventional constructions, for example. According to Drees & Sommer, thicker and thicker façade structures are being used, which consume valuable space.
Noise protection is thus usually achieved through solid and heavy exterior wall components. However, noise protection is extremely important in this building. After all, it is located on the outskirts of Stuttgart in the immediate vicinity of a busy four-lane motorway feeder road. At the same time, the property on which the building stands is very narrow, making a space-efficient construction method necessary.
210 millimetres thick – including solar module
The company aims to achieve this balancing act with the use of the new façade elements. „By using innovative materials, including above all sustainable insulating materials, we have achieved excellent thermal insulation and noise reduction values, and this with a thermal envelope of only 90 millimetres in construction,“ says David Schenke architect and façade specialist at Drees & Sommer. Together with the photovoltaic elements integrated into the panels that form the outer shell on the south and west sides of the building, the façade achieves a thickness of just 210 millimetres. „The area we save through this slim construction method can be put to good use elsewhere,“ David Schenke emphasises.
Also suitable and approved for high-rise buildings
With the first installation in its own new office building, Drees & Sommer is simultaneously introducing the new façade elements to the market. According to fire protection classification, they are also suitable for use in high-rise construction. „This is because the panel is non-combustible. That’s why the façade can also be installed in buildings more than 20 metres high,“ says Franz Ebert, Sales Manager at FKN Fassaden. Its suitability for high-rise buildings has been confirmed by the Materials Testing Institute for Construction at the Technical University of Braunschweig. In addition, the façade element has a general building authority approval (abZ).
Consistent attention to recycling management
However, the consumption of resources and the volume of waste were also central to the development. That is why the two companies consistently focused on recycling management. For example, the materials used in the new E-Co-Face façade meet the requirements of environmental labels such as DGNB, LEED or BREEAM. The basic insulation material Calostat is also certified with a view to the circular economy. The degradability of all parts, which is planned in detail, means that it is possible to separate them by type and the materials can thus be recycled or reused accordingly after their useful life.
Plus energy standard achieved
Drees & Sommer is investing a total of 22 million euros in the four-storey building with a gross floor area of around 7,000 square metres. The building, designed together with SCD Architekten Ingenieure, is intended to be more than just an office building. It will also serve as a demonstration object for potential building buyers. The building meets the standard of an energy-plus house. This is because it generates more energy in operation than it consumes. The well-insulated façade construction, additional photovoltaic installations on the roof – in addition to the solar façades –, the use of geothermal energy via a geothermal system and the green north façade all contribute to this. (su)
Meyer Burger adds solar roof tiles to its portfolio
The Swiss module manufacturer Meyer Burger has bought the rights for an in-roof solar system. It will be expanded to include its own technical developments.
Swiss module manufacturer Meyer Burger plans to expand its product portfolio with a roof-integrated solar system. It is to be installed in the same way as traditional roof tiles. However, to speed up the product launch, the company is using a certified and building authority-approved solution developed by a German engineering service provider specialising in photovoltaics and electromobility. The two partners have already agreed on the acquisition of the rights by Meyer Burger.
Presentation at The smarter E Europe
The company has not yet announced what the solution will be and what it will look like in concrete terms. Meyer Burger will present the solar roof tiles for the first time at this year’s The smarter E Europe, which will take place in Munich from 6 to 8 October 2021. The first delivery to customers is planned for the second half of 2022. „Integrated solar roof systems still represent a market niche today. With our novel solar tile solution, we plan to take roof-integrated solutions out of the niche and into a larger market,“ says Gunter Erfurt, CEO of Meyer Burger, explaining the acquisition of the in-roof solution. „It thus enables us to perfectly complement our portfolio of premium products and is another consistent step within our growth strategy.“
Better performance of the solar cells
With the solar roof tiles, Meyer Burger aims to solar-activate roofs for which rooftop installations are not an option for various reasons. The company will also equip the solar roof tiles with its own technical developments. For example, they will be equipped with the company’s own heterojunction cells, which are interconnected with Smart Wire technology. This enables a higher performance. This is because Meyer Burger reduces the shading losses, which are usually caused by the busbars on the top of the cell, by using a grid of ultra-thin wires through which the charge carriers are dissipated.
Solution for listed houses
Accordingly, the company defines private roof systems with completely new or replacement roofing as target applications. In addition, Meyer Burger also focuses on buildings in redevelopment and heritage conservation areas, houses with limited roof loads and roof installations that are particularly aesthetically demanding. (su)
Flat-rate heat delivery with solar system possible
An apartment building in the German city of Osnabrück was partially covered with solar thermal collectors. They supply a large part of the heat for the apartment complex. This is included in the rent as a lump sum.
In the German city of Osnabrück, the owner of an ensemble of buildings has created a barrier-free housing complex with solar technology and flat-rate warm rent. To do this, she first renovated the entire building to make it more energy-efficient. It consists of an L-shaped structure whose two wings are oriented almost exactly to the southeast and southwest. Therefore, a large part of the roofs facing in this direction were covered with solar thermal collectors.
Solar system harmoniously integrated
The solar installation was harmoniously integrated into the roof surface. To break up the surface, skylights break through the solar field. Since they have almost the same size as the collectors, they match the solar system perfectly and take up the pattern of the roof covering. The façade consists of a full thermal insulation system with a clinker look and is punctuated by large window areas, which gives the façade a very unique appearance.
Heat storage temporarily stores surpluses
In apartment buildings such as the one in Osnabrück, there is enough heat demand even in summer so that the system does not stagnate. In addition, a voluminous solar heat storage tank with a capacity of 25,000 litres was installed inside the building. This can temporarily store plenty of surplus solar heat, so that sufficient solar energy is available for heating and hot water consumption until well into the autumn.
The remaining heat is supplied by a condensing boiler that runs on gas. Originally, the homeowner had planned a pellet boiler as peak load heating. But it became clear that the access road to the house was too narrow to deliver the pellets by lorry. In addition, a municipal gas connection was already available, so in the end the choice fell on a gas boiler.
Flow temperatures kept low
In addition, the planners of the building technology, in cooperation with the architect Anja Machnik from Menslage, not far from Osnabrück, reduced the temperature requirements. With underfloor heating, via which the heat is distributed, lower flow temperatures are required than with conventional wall radiators, so that the stored solar heat lasts longer. Wall radiators were only installed in the bathrooms and the staircase, but they are also designed for the low temperatures.
In addition to the modern building technology, the property owner also opted for a new billing model. This is because the heat supply is included in the tenant’s rent as a flat rate. This works because most of the heat is supplied by the solar thermal system anyway. This means that there are no fuel costs for this part and only the heat costs have to recoup the investment and maintenance of the system.
Heat priced into rent
The situation is different for the part of the heat provided by the gas boiler. The owner buys the gas herself and charges it as a lump sum in the rent. There is no price per kilowatt hour. This requires a certain amount of courage and trust, as the homeowner explains. When selecting tenants, she therefore pays a lot of attention to choosing residents who appreciate the concept and live with it. Since she lives in the house herself, she can also better assess and keep an eye on the tenants‘ living behaviour.
Minimum room temperature set
To make sure that things don’t get out of hand, the heating systems are designed so that the room temperature never falls below 22 to 23 degrees Celsius. If it appears that tenants are still leaving windows open all the time at the same time, there is still the possibility of retrofitting heat meters in the flat if there is no other solution. (su)
New solar residential quarter in Berlin with a new heating concept
Five heat pumps, powered by solar electricity produced on site, supply a new residential quarter in Berlin with energy. It is completely trimmed for sustainability.
In the Berlin district of Neukölln, the housing company Stadt und Land is building a completely new urban quarter by the end of 2024. The „Buckower Felder“ project comprises several buildings with a total of 900 rental flats. The planners have consistently trimmed the new urban quarter with an area of 15.3 hectares to sustainability. In addition to a CO2-neutral heat supply and the use of innovative technologies, the focus of the neighbourhood project is above all on the energy efficiency of the buildings.
Waste water as a heat source
The planners from Energielenker Projects have designed a modern heating grid. This works with lower temperatures than conventional heating grids and thus saves a great deal of energy. At the same time, most of the heat energy that is still needed is generated with regenerative sources. A core element is the recovery of heat from wastewater. For this purpose, Berliner Stadtwerke is constructing a wastewater heat exchanger (WHE) with a capacity of 900 kilowatts.
Heat pumps use solar power
At the same time, the installers from Energielenker Projects are setting up five house connection stations. Each of these stations consists of an electric heat pump and a peak load boiler, each with a capacity of 200 to 300 kilowatts. The heat pumps use the heat provided by the WHE as a source. They are powered by electricity from the photovoltaic system that will be installed on 40 per cent of the roof surfaces of the new residential neighbourhood. The solar electricity not needed for the heat pumps is used by the residents of the new urban quarter. The heat produced at the house connection stations is distributed throughout the neighbourhood via a dedicated heating network.
Making better use of rainwater
In addition to the innovative heating network, Energielenker Projects is also implementing a new mobility concept. This is designed to avoid through traffic and thus reduce both noise and CO2 pollution within the neighbourhood. To support the urban climate, the roofs and also the façades are generously greened. In addition, rainwater will be used consistently, which is particularly important in Berlin with its low rainfall. For this purpose, Energielenker Projects is building so-called tree trenches. These are underground storage reservoirs that absorb the rainwater. Trees are planted on them, which can access the stored rainwater. (su)
High-rise bunker becomes a modern residential and commercial building
In Düsseldorf, an architect has transformed an old World War II bunker into a modern residential and commercial building. A contemporary energy concept ensures sustainable operation.
Düsseldorf’s Heyestraße is located on the eastern edge of the state capital of North Rhine-Westphalia. A huge high bunker has been enthroned there since 1942. Architect David Wodtke has transformed the former colossus into a modern residential and commercial building. He has not only completely redesigned the shell. He has also established a new energy concept that is designed to be as self-sufficient as possible.
Solar power system and CHP deliver electricity
This concept was developed by Matthias Henkel, Managing Director of Congy. The company’s name stands for Concepts for Energy. The core of the concept that Henkel developed for the old high-rise bunker is an abundant on-site production of electricity and heat. In addition to a large solar array that covers half of the annual electricity demand, a CHP unit in the basement of the building supplies the rest of the electricity and almost all of the heat. Since an adsorption chiller is installed to convert the heat from the CHP into cooling for the business offices in summer, the system can run all year round.
Storage farm ensures high self-consumption
In addition, two electricity storage units from E3/DC ensure that as much electricity as possible can be consumed in the building itself. This is because in addition to some commercial enterprises and a day care centre, whose consumption profile fits well with the production profile of the solar plant, there are also many flats in the building. The special feature: The storage system is designed as an energy farm. This means that one of the two storage units is connected to the grid control point as the master. This also communicates with the second storage unit, which as a slave does not require its own grid connection.
95 percent self-sufficiency achieved
In this way, about 75 percent of the electricity produced in the building can be used on site. As a result, the solar system and the CHP provide 95 percent of the electricity needed. The architect, who lives and works in the building himself, offers this to the other residents and commercial users at attractive conditions as tenant electricity.
German associations demand: Decarbonise buildings faster!
The demand for solar thermal, pellet heating and heat pumps has risen sharply. But three quarters of newly installed heating systems in Germany still use fossil fuels exclusively. The Green Heat alliance of associations wants to accelerate the switch to clean heat sources.
Last year, the demand for climate-friendly heating systems in Germany increased considerably. However, around three quarters of newly installed heating systems still use fossil fuels exclusively. The Green Heat Forum calls for a much faster decarbonisation of the building sector through renewable heating technologies and a correspondingly more ambitious energy policy.
Expectations of the coming government
With this initiative, the recently founded alliance of associations consisting of the German Solar Industry Association (BSW), the German Heat Pump Association (BWP) and the German Energy Wood and Pellet Association (DEPV) responded to the Federal Climate Protection Act (KSG), which was tightened at the end of July, and jointly formulated their expectations of the coming federal government.
The suppliers of decentralised RE heating systems such as solar thermal, pellet heating and heat pumps represented by the three associations are pursuing the goal of saving three to four times more CO2 annually by 2030 than they do today. It is true that the demand for climate-friendly heating systems has increased significantly. However, in the absence of suitable framework conditions, only a small part of the CO2 reduction potential has been realised in the heating sector.
Raising the CO2 price
The associations are convinced that one key to a faster energy transition in the building sector is a significantly higher CO2 price. The resulting earnings should be returned to consumers, among other things by lowering the price of electricity.
The necessary acceleration of the modernisation of heating systems must be achieved through long-term subsidy programmes for the replacement of heating systems, for energy-efficient renovations and for renewable district heating.
Strengthening the skilled trades
In addition to tightening up the Building Energy Act, the Alliance advocates a junior staff and qualification offensive in the skilled trades with regard to renewable heating technologies. For many consumers, investing in a renewable heating system is already the economically smarter alternative. The redesign of the „Federal subsidy for efficient buildings“ (BEG) with more attractive subsidy rates has contributed to this.
According to the recently amended Federal Climate Protection Act, the building sector should save 51 million tonnes of CO2 by 2030 and emit no more than 67 million tonnes. According to the unanimous assessment of the Green Heat Forum, this target can only be achieved with a much more ambitious energy policy and requires much more ambitious immediate measures after the German parliamentary elections in September this year than most recently planned by the current gonverning coalition. (HS)
Germany sets new investment incentives for efficient buildings
The new subsidies for the energy-efficient refurbishment of existing buildings and for the construction of efficient buildings will start on 1 July. New efficiency classes will be introduced.
In Germany, the new federal funding for efficient buildings (BEG) for residential and non-residential buildings will start on 1 July 2021. Property owners who renovate their buildings to make them more energy efficient will receive either an investment grant or a credit with low interest rates from KfW. If the property owner opts for the low-interest loan, he or she receives a repayment subsidy equal to the amount of the investment grant.
More funding for renewable heating
Within the framework of the BEG, the Federal Government not only promotes the insulation of the building envelope, but also the changeover to heating systems based on renewable energies. If the building owner heats with renewable energies and does without gas, the investment subsidy is 35 percent. The installation of a gas condensing boiler is subsidised with 20 percent of the investment costs – but only if it can be converted to renewable energies such as green hydrogen. An investment subsidy of 30 percent is available for solar thermal systems, among others.
Sector coupling ensures more self-consumption
This also makes the use of photovoltaics for heating, for example in the form of a solar-electric direct heating system or a heat pump powered by solar electricity, more attractive and the solar-activated building envelope more economical. This is because a decisive prerequisite for a solar façade to pay off is the use of the highest possible share of solar electricity directly in the building.
New efficiency classes introduced
At the same time, new efficiency classes are introduced. An existing building achieves efficiency class EE if it covers at least 55 percent of its heating and cooling needs with renewable energies. This also applies to new buildings. For newly constructed buildings, the efficiency class NH was also established. For this purpose, a sustainability certificate is obtained for the building. This must be issued by an accredited certification body. It certifies that the building meets the requirements of the „Sustainable Building“ quality seal.
Tenant electricity projects become more economical
The new federal subsidy for efficient buildings also makes the installation of a solar system in apartment buildings more attractive, without having to use the complicated tenant electricity scheme. This is because if a large part of the electricity generated by the building itself is consumed on site in the form of heat, the economic viability of collectively used solar installations also increases. This is because the previous tenant electricity subsidy by the federal government has hardly led to any success.
Investment subsidy works better than long-term promotion
This could now change with the BEG in combination with the Building Energy Act (GEG), Florian Henle of the green electricity supplier Polarstern is sure. Among other things, the company specialises in the implementation of tenant electricity projects. „The BEG can be planned for by property owners, has a sustainable effect by directly setting investment incentives and at the same time supports an efficient energy supply and strengthens cross-sector integration and smart control of the energy supply of buildings,“ Henle describes the advantages of the investment subsidy for switching to solar-electric heat supply. „Property owners benefit from this just as much as residents.“ (su)
Mehr als die Hälfte der Neubauten in Deutschland heizen mit Wärmepumpe
In Deutschland wurde im vergangen Jahr der Bau von 124.596 Wohngebäuden genehmigt. 65.801 davon werden mit Wärmepumpenheizungen gebaut. Das ist ein Marktanteil von 52,8 Prozent.
Im vergangenen Jahr wurden 52,8 Prozent aller Neubauprojekte in Deutschland mit Wärmepumpenheizungen geplant. Das berichtet der Bundesverband Wärmepumpe (BWP) unter Berufung auf die Zahlen des statistischen Bundesamtes. Diese Statistik bezieht sich auf die im vergangenen genehmigten Neubauten. Wie viele davon tatsächlich auch 2020 fertig geworden sind, geht daraus nicht hervor. Doch die wichtigste Tatsache ist, dass sich immer mehr Bauherren für die klimafreundliche Variante der wassergeführten Heizung entscheiden. Im Jahr zuvor wurden noch 45,9 Prozent der Neubauten mit einer Wärmepumpe geplant.
Weniger Gasheizungen gebaut
Damit geht der Anteil der Gasheizungen im Neubau weiter zurück. Schon seit 2017 ist sie in Deutschland nicht mehr die dominierende Heiztechnik. Im Jahr 2020 wurden aber weniger als ein Drittel der Gebäude noch mit der alten fossil befeuerten Technologie ausgerüstet. Fast stabil – mit nur einem leichten Rückgang – stehen die anderen Heiztechnologien wir Fernwärme, Holz, Öl, Strom, Solarthermie und Biogas gemeinsam auf dem dritten Platz.
Doch auch innerhalb der Wärmepumpenbranche gibt es einen deutlichen Trend. Denn mit 10.257 Geräten werden nur 8,2 Prozent der 2020 neu errichteten Gebäude mit Geothermie beheizt. Mit 55.544 Neuinstallationen im Neubau liegen die Geräte, die Umweltwärme vor den Erdwärmepumpen mit eine Zubau von 10.257 Geräten.
Trend geht hin zur Wärmepumpe
Insgesamt liegt der Anteil der Wärmepumpenheizungen allerdings noch weit hinter den alten fossilen Geräten. Allerdings steigt auch hier der Anteil von 11,7 auf 12,8 Prozent. Das ist vor allem den Sanierungen zu verdanken, bei denen in der Regel auf eine klimaschonende Heizung zurückgegriffen wird. „Im Neubau ist die Wärmepumpe als System zum Heizen und Kühlen unschlagbar – dieser Trend zeichnet sich schon länger ab“, resümiert Martin Sabel, Geschäftsführer des BWP, den Marktgewinn im vergangenen Jahr. „Der Staat bietet attraktive Anreize, damit im Neubau mindestens das KFW Effizienzhausniveau 55 realisiert wird. Mit einem schlechteren Standard sollte man sich als Häuslebauer auch nicht zufriedengeben. Dieses Niveau ist mit einer Wärmepumpe als erneuerbare Heizungstechnik leicht zu erreichen.“
Förderungen werden attraktiver
Mit der neuen Bundesförderung energieeffiziente Gebäude (BEG) werden die Förderungen ab 1. Juli 2021 sogar noch attraktiver. „Nachdem die Wärmepumpen in Deutschland im vergangenen Jahr die Millionenmarke geknackt haben, muss jetzt allerdings auch im Bestand noch mehr Schwung in den Markt kommen, um die angepeilten Klimaziele im Gebäudesektor erreichen zu können“, betonen die Branchenvertreter von BWP. Martin Sabel mahnt hier vor allem an, die Entlastung der Preise für den Wärmepumpenstrom anzugehen, um endlich einen fairen Wettbewerb mit dem bisher bevorzugten Gas herzustellen. (su)
Climate houses in Schallstadt show architecture of the future
Architect Rolf Disch is building four new apartment houses with plus-energy standard near Freiburg im Breisgau in Germany. The buildings show not only in terms of design what architecture of the future can achieve.
In Schallstadt, a small community in the south-east of Germany in the Black Forest, just before the French border, a flagship project of the architecture of the future is being built.Solar architect Rolf Disch, who already realised a first large-scale BIPV project in 2006 with the Solar Residential Estate in Freiburg, has designed four houses that not only give a clear indication of the future of architecture in terms of design. They will also be at the cutting edge of technology in terms of energy.
Solar modules accentuate the line of the façade
The row of buildings with a length of about 115 metres will be divided into four individual apartment buildings. The houses with 83 residential units and four shops will achieve the plus-energy standard, i.e. they will generate more energy than they consume. This is ensured by the solar systems, which on the one hand, as balcony parapets on the garden side facing away from the street, give the façade a very special appearance. This is because they clearly accentuate the meandering balcony strips, which give the already loosened façade an additional dynamic.
The roof seems as light as a leaf
Added to this are the solar panels, which lie flat on the roofs and help the entire building ensemble to appear as light as a leaf. Together with the solar roofs of the underground garages, the solar systems of the buildings achieve a total power of 470 kilowatts. This is enough to cover the buildings‘ entire energy needs. For on the one hand, these are trimmed for minimum consumption. On the other hand, a storage unit with a capacity of 120 kilowatt hours was installed to temporarily store the solar power that is not immediately consumed. This storage system is modular and can be expanded later if necessary. In addition, there is the perspective of using the batteries of the electric cars that will be added to the living in the new buildings in the form of a car-sharing service.
Cold local heating saves energy
On the heating side, all buildings can be connected to a so-called cold local heating network. The principle behind this is very simple: the uninsulated cold water pipes draw heat from a large sewer that crosses the new development area. In this way, the water arrives in the buildings at a temperature between 15 and 17 degrees Celsius in summer as well as in winter. This makes it the perfect source for the installed heat pumps, which heat the water by another 20 Kelvin. Due to the low temperature lift, the heat pumps achieve an annual performance factor of 4.5 and consume little electricity, which is supplied by the solar building envelope.
Cooling in summer without a heat pump
The 35 to 37 degrees Celsius are, in turn, completely sufficient as a supply for the underfloor heating in the well-insulated buildings. The hot water is additionally heated to about 48 degrees Celsius. The architect, who is also the developer of the buildings, ensures the hygiene of the drinking water by means of a legionella filter. The technology has the advantage that in summer the system can be used for cooling. Because then the pumps simply send the cool water from the cold local heating pipe through the underfloor heating systems without the heat pump having to actively help.
200,000 kilowatt hours surplus
In this way, the buildings consume only minimal amounts of energy.Rolf Disch estimates that the buildings, with their 6,800 square metres of usable floor space, save 600,000 kilowatt hours of end energy per year compared to a building at the current energy standard of the Building Energy Act (GEG), which is heated with condensing boilers.Rolf Disch estimates that the buildings, with their 6,800 square metres of usable floor space, save 600,000 kilowatt hours of end energy per year compared to a building at the current energy standard of the Building Energy Act (GEG), which is heated with condensing boilers. „This does not even include the fact that the energy source for heat and electricity is mainly provided by the photovoltaic system with a yield of about 420,000 kilowatt hours, which results in a surplus of clean electricity of more than 200,000 kilowatt hours,“ explains Disch. This is not fed into the grid, but used directly on site for the electric cars.
Planning for the future now
For Rolf Disch, this is a matter of course as an architect. After all, the industry has a huge responsibility, since it is creating the built environment for the next decades and must already take the challenges of climate change more seriously than other industries with their products that have a shorter lifespan. „Architects and developers make a choice: with every line they draw, with every euro they spend, they end up either heating up the climate or helping to mitigate climate change,“ he says, explaining his motivation to focus on climate-friendly construction methods for decades. (su)
More sun for Berlin: Where new opportunities open up for landlords
The Berliner Zeitung continues its series of advice on solar power and self-consumption. Part 4 provides information on various ways to use solar power to increase income from renting out residential or commercial space - by relieving the burden on energy costs.
It could also be an example for Berlin: Michael Schwaiger – an expert when it comes to lucrative real estate – buys up properties to refine them. Among other things, with solar power from the roofs. „Sustainable revitalization of existing properties,“ he calls it and predicts, „Solar power has a positive effect on the marketing of the areas and, last but not least, contributes to an increase in the value of the property.“
However, the Schwaiger Group – Michael Schwaiger’s company – is primarily active in Munich, as a redeveloper and developer. It became known with Centro Tesoro, an aging office complex from the 1970s and 1980s. The ensemble has now been refurbished and, with a total of 24,000 square meters, is considered the epitome of sustainable construction and management of office properties.
Retaining the right tenants
Centro Tesoro was the first redevelopment property in Germany to receive a LEED Platinum certificate. LEED stands for Leadership in Energy and Environmental Design, it is a rating system for sustainable buildings.
The Schwaiger Group extensively insulated the office buildings and installed a new heating system with gas burners. 428 kilowatts of photovoltaics were installed on the flat roofs, in cooperation with Munich’s public utility company. The solar power is sold to the commercial tenants, who save considerable electricity costs as a result. Surpluses are fed into Munich’s power grid.
Berlin is still asleep – and dreaming
In markets where there is an oversupply of rental space, sustainable self-sufficiency is an important argument for attracting the right tenants. At Centro Tesoro, for example, the Schwaiger Group was able to secure Lime as a long-term tenant, a provider of sharing services with e-scooters. The mobility company had made green home electricity a condition of the lease.
Solar energy transition for the capital region
Solar home power for landlords: What is now state of the art and everyday business for the solar industry is far from being common knowledge for many people. That’s why the Berliner Zeitung is publishing a series of guides that explain various models for supplying one’s own electricity.
In six episodes, the capital city medium explains the opportunities offered by solar self-sufficiency and e-mobility. In the fourth part the real estate owners and landlords of residential and commercial properties are addressed. This is followed by architects and public administration.
Publications online and in print
The series began on May 7, 2021, with the other parts following at one-week intervals. In addition, the articles will appear in the print edition (approximately 80,000 copies), each in the following week. (HS)
Mehr Sonne für Berlin: Wo sich neue Chancen für Vermieter eröffnen
Der Teil 4 der Ratgeberserie der Berliner Zeitung rund um Sonnenstrom und Eigenverbrauch informiert über verschiedene Wege, mithilfe von Sonnenstrom die Einnahmen aus der Vermietung von Wohnraum oder Gewerbeflächen zu steigern – indem die Energiekosten entlastet werden.
Es könnte auch ein Beispiel für Berlin sein: Michael Schwaiger – ein Experte, wenn es um lukrative Immobilien geht – kauft Immobilien auf, um sie zu veredeln. Unter anderem mit Sonnenstrom von den Dächern. „Nachhaltige Revitalisierung von Bestandsimmobilien“, nennt er das und prophezeit: „Solarstrom wirkt positiv bei der Vermarktung der Flächen und trägt nicht zuletzt zu einer Wertsteigerung der Immobilie bei.“
Die Schwaiger Group – Michael Schwaigers Unternehmen – ist allerdings vornehmlich in München tätig, als Sanierer und Bauträger. Bekannt wurde sie mit dem Centro Tesoro, einem in die Jahre gekommenen Bürokomplex aus den 1970er- und 1980er-Jahren. Mittlerweile ist das Ensemble saniert und gilt mit insgesamt 24.000 Quadratmetern als Inbegriff für nachhaltiges Bauen und Bewirtschaftung von Büroimmobilien.
Solare Energiewende für die Hauptstadtregion
Solarer Eigenstrom für Vermieter: Was für die Solarbranche mittlerweile Stand des Wissens und Alltagsgeschäft ist, zählt für viele Menschen längst nicht zum Allgemeingut. Deshalb veröffentlicht die Berliner Zeitung eine Ratgeberserie, die verschiedene Modelle der Eigenstromversorgung erläutert.
In sechs Folgen erläutert das Hauptstadtmedium die Chancen, die sich durch solare Eigenstromversorgung und E-Mobilität ergeben. Im vierten Teil werden die Immobilienbesitzer und Vermieter von Wohnraum und Gewerbeflächen angesprochen. Danach folgen die Architekten und die öffentliche Verwaltung. (HS)
German Federal Ministry of Finance lowers taxes for small solar systems
Operators of small private solar systems no longer have to declare profits from their generator on their tax returns. The systems are considered a hobby.
The Federal Ministry of Finance in Germany has abolished the income tax obligation for small photovoltaic systems with an installed power of up to ten kilowatts. Previously, operators of such systems were considered entrepreneurs and had corresponding expenses when preparing their tax returns. In the future, the operation of small solar systems will be considered a hobby and will be exempt from income tax. This is because it will then no longer be assumed that the system is operated in order to make a profit.
Profits will no longer be determined
This means concretely that the profits, but also the losses, from the solar plants are no longer taken into account under income tax law, as the Bavarian State Office for Taxes specifies the letter of the Federal Ministry of Finance in a leaflet. Thus, the system operator also no longer has to calculate the profits and in the future also no longer has to fill out and submit an income surplus statement (Annex EÜR of the tax forms). The simplification has no effect on the VAT regulations for operators of photovoltaic systems.
Regulation applies to small private systems
The regulation applies to generators on one- or two-family houses built from 2004 and in which the operator of the plant lives. There may also be a workroom in this building. In addition, guest rooms, if rented out, are not included if the income is less than 520 euros per year. The regulations also apply to combined heat and power plants with an installed electrical power of up to 2.5 kilowatts.
However, the plant operator must apply once to his tax office for this tax relief. If he does not do so, the tax office will continue to check the intention to make a profit. The plant operator can then not make use of the simplified regulations. (su)
With the amendment of the Income Tax Directive by the Austrian Federal Government, the tax framework for some operators of photovoltaic systems is also changing. This is taken into account by the current tax guide of PV Austria.
The federal association PV Austria has updated the tax guide for operators of photovoltaic systems in Austria. It is already the third edition of the guide about the tax regulations that have to be considered when operating private and commercial solar arrays. The update was primarily prompted by the amendment of the Income Tax Directive, which has been in force since May 6, 2021.
New regulations for farms
This is because, among other things, regulations on income tax for the leasing of roof and ground areas in agriculture for the construction of photovoltaic systems have been newly added to the directive. However, tax regulations also apply to all other system operators or land owners, even if the electricity is used by the producer itself. This is because income tax liability also arises for the withdrawal of self-generated electricity for private purposes, as the authors of the guide emphasize. In this context, the question of sales tax liability must also be addressed.
Practical examples presented
This is one of the things the authors do in the new tax guide. It provides a comprehensive overview of the tax situation in Austria when operating a photovoltaic system. To illustrate and facilitate the understanding of a subject that only a few people like to deal with, the guide also contains calculation examples from practice.
The updated edition of the tax guide can be downloaded free of charge from the PV Austria website. The authors of the guide also refer to a webinar that the association held on the subject of tax law, which you can listen to free of charge. (su)
FH Kufstein zeigt Planung der solaren Gebäudehülle
Unter dem Titel „Solartechnik und Architektur“ zeigen die Referenten eines Webinars der Fachhochschule Kufstein die Möglichkeiten der BIPV. Es geht nicht nur um gestalterische, sondern auch um planerische Möglichkeiten.
Die bauwerkintegrierte Photovoltaik (BIPV) wird bei immer mehr Architekten zur Planungsaufgabe. Um den Architekten zu zeigen, wie und mit welchen Möglichkeiten solaraktive Gebäudehüllen geplant werden können, lädt die Fachhochschule Kufstein in Tirol zu einem entsprechenden Webinar ein.
Integrative Planung mit BIPV
Unter dem Titel „Solartechnik und Architektur – Bauen mit der Sonne“ wird zunächst Roland Kippner von der Fakultät Architektur der Technischen Hochschule Nürnberg einen Überblick über die bauwerkintegrierte Solartechnik geben. Im Anschluss daran werden einige herausragende und preisgekrönte Projekte vorgestellt. In der Veranstaltung geht es nicht nur allein um die gestalterischen Möglichkeiten, sondern auch darum, wie mit der BIPV und die integrative Planung solcher Anlagen sogar Einsparungen bei den Baukosten erzielt werden können. Schließlich werden andere Bauteile durch Solarmodule ersetzt.
Die Veranstaltung findet im Rahmen der Nachhaltigkeitswoche der FH Kustein statt. Zu den Kooperationspartnern gehören die Standortagentur Tirol, Austria Solar und Photovoltaic Austria, Energie Tirol und der Solarenergieförderverein Bayern. Das Webinar findet am 15. Juni 2021 von 17:30 bis 19:30 Uhr statt. Die Teilnahme ist kostenlos. Weitere Hinweise und eine Link zur Anmeldung finden Sie auf der Internetseite der FH Kufstein.
Berliner Zeitung launches advisory: Independent with solar power from the own roof
More sun for Berlin: As the first large nationwide daily newspaper, the Berliner Zeitung has launched an advice series on solar power and self-consumption. Part 1 informs about the opportunities for homeowners and their path to self-sufficiency.
If you own your own home, you can dramatically reduce your energy costs – with solar modules and electricity storage. What is now state of the art and everyday business for the solar industry is far from being common knowledge for many people.
Solar energy transition for the capital region
In order to promote the solar energy transition in the capital region, the Berliner Zeitung has now launched an advice series. In six episodes, it explains the opportunities that arise from solar self-sufficiency and e-mobility. In the first part, private solar customers are addressed first. This is followed by commercial customers, tenants and landlords, architects and public administration. (HS)
Switzerland has probably failed to meet its 2020 climate protection targets in most areas. This is the result of initial estimates by the Federal Office for the Environment.
Switzerland has missed its climate targets in some areas. The current greenhouse inventory of the Federal Office for the Environment (Bafu/OFEV/UFAM) shows that the Swiss emitted 45.2 million tonnes of CO2 in 2019. This is 14 per cent less than in 1990, but the federal government’s target for 2020 was a 20 per cent reduction.
Transport remains the problem child
While the energy sector has already made good progress on the path to climate-neutral supply, the Swiss‘ problem child is primarily transport. With 15 million tonnes of CO2 in 2019, it even emitted one percent more greenhouse gases than in 1990 – despite the increasing admixture of biofuels. This means that the transport sector missed the target of minus ten percent in 2020, emphasise the officials of the Bafu.
Building sector on the right track
The building sector is in a better position. After all, a lot has happened in Switzerland in this sector in recent years. Energy efficiency has increased and renewable energies are increasingly finding their way into heating rooms in the form of photovoltaic heat pumps and heat pumps powered by green electricity. Oil and gas boilers are increasingly being replaced by such heating systems.This has led to a 34 per cent reduction in emissions in this sector in 2019 compared to 1990. However, this was also not enough to achieve the target of a 40 per cent reduction in 2020.
Industry with good interim results
With 14 percent less CO2 emissions in 2019 compared to 1990, the industrial sector is at least on the home stretch. For this sector, reductions of 15 percent were planned for 2020. However, the reduction of CO2 emissions by industry has hardly decreased in recent years, so that the analysts of the Bafu assume that in 2020 this target will also have been missed. However, the concrete data will be published in the next greenhouse inventory, which will appear in 2022, when the overall energy statistics for 2020 are available. This is because the Bafu calculates CO2 emissions on the basis of the fossil energy sources used. (su)
Freiburg City Hall operates almost climate-neutral
The evaluation of the measurement data from the first years of operation of the new town hall in Freiburg shows that the concept of climate-neutral operation almost works. To achieve this, the building envelope was also energetically activated.
After several years of detailed measurement of the operating data, it is now clear: the town hall in Stühler in the German city of Freiburg im Breisgau almost achieves climate neutrality in operation. Exactly this was the goal that the architects and the city of Freiburg wanted to achieve during the planning and construction of the new town hall. To achieve this, on the one hand they paid attention to efficient systems engineering and low energy consumption for heating, domestic hot water, ventilation and air conditioning.
The façade also generates electricity
On the other hand, they have equipped the building with a large solar array. There are solar modules on the flat roof of the oval structure, for example, which provide part of the electricity supply. As with all large, multi-storey buildings, the planners were faced with the challenge that the usable floor space, and thus the energy demand, would increase without the space on the roof available for energy generation growing at the same rate. In order to achieve a balanced primary energy balance through energy generation at the town hall in Freiburg, the whole building envelope is used for energy generation – where appropriate and possible.
Therefore, in addition to the roof system, solar modules were also integrated into the façade. Hybrid collectors, which produce solar electricity and solar heat at the same time, were also installed. They are used to heat most of the domestic hot water. A gas boiler here only covers peak loads, should they occur.
Separate space heating and hot water
The supply of space heating is based on a low-temperature concept. Heat pumps are used, which utilise groundwater as a heat source. Heating and cooling are provided by surface systems in the form of concrete core activation combined with ceiling sails. Cooling is realised almost completely with environmental energy via a groundwater borehole. To ensure that this cooling concept works in summer and that hot water is still available for the canteen and the sanitary equipment, the planners have consistently separated the hot water preparation from the space heating supply. This also enabled them to implement the low-temperature concept. This is because higher temperatures are required for the preparation of hot domestic water than for the surface heating systems in the concrete core activation system.
Measured data agree with targets
The Fraunhofer Institute for Solar Energy Systems (ISE) not only accompanied the planning phase, but also recorded the operating data after completion. „The monitoring yields a positive result: most of the determined key figures agree with the target values of the planning – not a matter of course for new buildings with complex system technology,“ emphasise the Freiburg researchers. The targets for heating consumption were not fully achieved, despite the already low consumption values. The yields from the solar thermal system are also below expectations.
Five per cent more consumption
But all in all, the primary energy balance is almost complete. „In 2018 and 2019, just about five percent more primary energy was consumed than was generated locally,“ says Peter Engelmann, Group Leader Building Systems Technology at Fraunhofer ISE. „Nevertheless, the result can be considered a great success. Because the town hall in Stühlinger impressively demonstrates that a building of this size can meet the requirements for climate neutrality.“ However, the toen hall also shows that larger buildings will no longer be able to manage without a solar-active envelope in the future. (su)
Webinar: Sanierungskompass Gebäudehülle stellt digitale Plaungswerkzeuge vor
Mit einer Webinarreihe unterstützen verschiedene Anbieter von Lösungen für die Gebäudehülle die Planung der Sanierung von Bestandshäusern. Der Schwerpunkt liegt auf moderne energetische Standards. Auch die bauwerkintegrierte Photovoltaik rückt in den Mittelpunkt.
Mit der Veranstaltungsreihe „Sanierungskompass Gebäudehülle“ beleuchten vier Unternehmen den digitalen Planungsprozess der energetischen Ertüchtigung von Bestandsbauten. Die Webinare werden bestritten von Bauder, einem Anbieter von Gründachlösungen auch in Verbindung mit Photovoltaikanlagen, die Dachziegelwerke Nelskamp, die auch solare Elemente im Portfolio haben, der Dämmstoff- und Fassadenanbieter Sto und der Dachfensterhersteller Velux.
Werkzeuge und ihre Anwendung präsentieren
In den Vorträgen konzentrieren sich die Referenten aus Architektur und aus den Unternehmen auf den Einsatz von digitalen Werkzeugen vom Entwurf bis hin zur Baustelle. So wird der Architekt Wolfram Putz, Mitbegründer der Architekturgruppe Graft neue digitale Instrumente zum Skizzieren präsentieren. Die Architektin Katrin Bialucha wird die Möglichkeiten und Lösungen für das digitale Planen und Bauen am Beispiel einer Wohnbausanierung in Darmstadt beschreiben.
Neue Planungstools vorgestellt
Außerdem stellen Experten der Baubranche ihre neuesten digitalen Tools für die Planung der Gebäudehülle vor. Die Bandbreite reicht von Anwendungen für die digitale Auslegung von Steildächern über ein Solarauslegungstool für die frühzeitige Integration von Photovoltaik bis zum digitalen Drohnenaufmaß und einem Daylight Visualizer. Im Anschluss an die Impulsvorträge stehen alle Experten für vertiefende Gespräche und konkrete objektspezifische Fragen zur Verfügung.
Teilnahme ist kostenlos
Detaillierte Informationen über die Themen und Referenten finden Sie auf der Landingpage der Veranstaltung. Dort können Sie sich auch für das kostenlose Webinar anmelden. Es findet am 18. Mai 2021 von 16 bis 18 Uhr statt. (su)
Researchers at the University of Stavanger in Norway have studied the economic viability of solar building envelopes. The result: BIPV has reached grid parity in most European countries.
Two researchers from the University of Stavanger in Norway have examined the costs of building-integrated photovoltaic (BIPV) systems to find out how economical they are. Since this economic efficiency results primarily from the self-consumption of the solar electricity produced in the building envelope and thus from the replacement of grid electricity, they focused precisely on this aspect.
Emissions costs included
On the one hand, there are the electricity costs, which vary greatly in Europe. The range here is between eleven cents per kilowatt hour in Hungary and Lithuania and 29 cents per kilowatt hour in Belgium, 30 cents per kilowatt hour in Germany and 31 cents per kilowatt hour in Denmark. Of course, these prices are not stable. Thus, the researchers assume a price increase of two per cent per year.
Of course, the researchers have also included the costs for greenhouse gas emissions that would result from the energy consumption when purchasing grid electricity. Here, the scientists put a price of 50 euros per tonne on the carbon dioxide emissions due to the electricity mix in the respective country. They also calculate an increase in emission costs of four percent per year and a reduction in greenhouse gas emissions of 2.1 percent per year.
Calculating electricity yield over the lifetime of the plant
On the other side of the calculation are the electricity production costs, the so-called Levelised Cost of Energy (LCOE), for BIPV. These are calculated over the lifetime of the systems. The researchers set the parameter here at 30 years. During this time, the modules lose 0.5 percent of their performance every year. They calculate that the inverters need to be replaced every 15 years. In addition, there are the operating costs for the system, which are estimated at 0.5 percent of the total investment sum.
Efficiency estimated at 16 percent
For the actual system costs, the researchers calculate on the one hand the material for the building envelope and additional costs for the solar activation of the façade and roof surfaces. They set the efficiency of the solar systems at 16 percent. This allows the calculation to cover, on the one hand, the lower performance of coloured modules compared to panels with normal solar glass. But the rather low estimated efficiency is of course also a result of the fact that modules installed vertically on façades do not generate the same yield as panels optimally oriented towards the sun.
3,600 kilowatt hours per year from the building envelope
On the basis of this module efficiency and the solar radiation in the respective country – here the researchers worked with the data of the corresponding capital city – it was possible to calculate the electricity yield over the lifetime of the system. These values range from 2,819 kilowatt hours per square metre in Finland to 5,084 kilowatt hours per square metre in Cyprus. In Europe as a whole, the systems produce an average of 3,601 kilowatt hours per square metre over their entire lifetime.
Electricity yields drive profitability
This average electricity yield earns 578 euros. On the other hand, there are 535 euros in additional investments and costs specifically for photovoltaics in the building envelope. Of course, this varies from country to country. But if one includes the electricity generation through the building envelope and does not only apply the net present value of total costs, BIPV is economic everywhere in Europe with the parameters that the researchers have applied. Therefore, the driver of economic viability is the profit due to electricity production in the building envelope. But even if the net present value of the costs is taken into account, there are only a few countries with very low electricity prices and very poor solar irradiation where BIPV cannot compete with conventional façade and roof materials.
Quality determines economic efficiency
The prerequisite here is the use of high-quality components. Because – the researchers have also calculated this – if the durability of the solar modules and the inverters decreases and they have a lower efficiency, the systems will become uneconomical in many European countries. The paper by the Norwegian researchers appeared in a special issue of Energies magazine on BIPV, published by the Multidisciplinary Digital Publishing Institute (MDPI). (su)
Webinar: Roof integration with Solrif- now for listening
The webinar showed architects and homeowners, planners and installers the various possibilities and advantages of roof integration of solar modules. It offers added value for the visual appearance of a building, but also has other advantages. Review the webinar - with the recording available now.
The use of solar systems as roof cladding is becoming increasingly popular. Such roof-integrated photovoltaic generators offer added value – visually, technically, but also economically in new buildings and renovations. In the webinar „Roof integration with Solrif – A proven system for modern optics“, Dr. Helge Hartwig, sales manager of Ernst Schweizer AG, showed which advantages homeowners can benefit from roof integration, which opportunities it opens up for architects and how solar installers can improve their market position with it.
However, the joint event organized by Ernst Schweizer AG and the trade magazines Photovoltaik and Solar Age was not only about design possibilities, but also about the planning, design and installation of roof-integrated solar systems. Helge Hartwig answered frequently asked questions about the roof integration of modules – from rear ventilation to economic efficiency and certificates – and presented important module suppliers such as Aleo Solar, Sonnenstromfabrik and Axsun.
The recording of the webinar is now available on the new website of the Solrif in-roof system. There you will also find more details on application possibilities, references and technical details. (su)
Germany launches serial refurbishment funding program
The German government is now promoting projects and solutions for serial renovation. The aim is to bring existing buildings up to the state of the art with prefabricated roof and façade elements.
The German government has initiated a funding programme for serial refurbishment. On the one hand, this is intended to accelerate the energetic renovation of buildings in order to increase the potential for energy efficiency in existing buildings. On the other hand, it also brings the integration of photovoltaics into the building envelope more into focus.
This is because the concept of serial refurbishment provides for the buildings to be equipped with state-of-the-art façade and roof elements, including the associated system technology, which are manufactured locally. These building elements and technology modules have a high degree of prefabrication. In this way, the costs for refurbishment are reduced. „This is attractive for the real estate industry, for owners and also for tenants,“ says German Federal Minister of Economics Peter Altmaier in view of the launch of the funding programme.
First step: Finding suitable buildings
The system technology in turn includes, among other things, electric heating systems such as heat pumps, which in turn are powered by renewable energies. Thus, in addition to analysing the technical, economic and legal feasibility of a concrete serial renovation project, the first module of the funding explicitly provides for the use of electricity yields from solar installations on site.
Second step: Find a solution suitable for series production
In the second step, the development of the serial renovation components is subsidised. This involves the conceptual and practical development of prefabrication and the optimisation of processes in the production and installation of the building elements. The aim is to find scalable solutions suitable for series production with the highest possible degree of prefabrication. „The integration of several components or functions is particularly useful in achieving this goal. This includes, among other things, the integration of photovoltaics in roof modules as well as integrated system technology modules that bundle the building equipment as completely as possible,“ writes the Federal Office of Economics and Export Control (Bafa) in the funding guidelines.
Third step: Building production capacities
The third module is about building up production capacities for the industrial manufacture of façade and roof elements and the associated plant and building technology. Funding is provided here for production lines on which components are manufactured that meet the definition of serial refurbishment. The subsidised production capacities must be used for the manufacture of these components for at least five years in order to be eligible for funding.
What this means and what other requirements have to be met can be found in the funding guidelines on the Bafa website. (su)
Conexio had to change the photovoltaic week to a digital event. But there will be a large platform offering all communication options.
The organiser of the Photovoltaics Symposium has moved the solar industry’s class meeting to the Internet. Since the face-to-face event planned in Freiburg is still not possible due to the corona pandemic, Conexio has made this decision.
Professional exchange remains possible
But despite the restrictions, everything that would have been possible in Freiburg will be possible on the platform that Conexio has set up – only without direct contact. Thus, the organiser will not only broadcast the presentations digitally, but also offer discussion rounds, opportunities for personal networking and numerous possibilities for interaction. This way, professional exchange among speakers, participants, sponsors and partners will still be possible. You can also make contacts on the platform.
BIPV Forum integrated
Digitally, the Photovoltaic Week will also offer a comprehensive overview of the latest research findings, new business models, new ways of using photovoltaics and the current political and legal framework conditions. The complete digital programme can be found on the Photovoltaics Symposium website. It will take place from 18 to 21 May 2021 and on 25/26 May 2021. The topics of building-integrated photovoltaics (BIPV) are mainly on the programme in the second part of the symposium. The former BIPV Forum will thus be firmly integrated into the Photovoltaics Week. (su)
VDE Verlag: Neues Fachbuch zur BIPV – Sonnenstrom aus der Gebäudehülle
Im Frühjahr 2021 wird der VDE Verlag ein neues Standardwerk zur Bauwerkintegrierten Photovoltaik (BIPV) herausgeben. Es erscheint auch als E-Book. Interessenten können das Buch ab sofort vorbestellen.
Das neue Fachbuch wurde von Sven Ullrich und Heiko Schwarzburger verfasst, die gemeinsam das Webportal Solar Age speziell für Architektinnen und Architekten betreiben. Zudem gehören sie zum Redaktionsteam der photovoltaik.
Das sind die Fachthemen:
Grundlagen der Solartechnik, Wirtschaftlichkeit von solarer Architektur, Freiheit in der Gestaltung, Technik der Montage, Planung und Auslegung von Solarfassaden, Reduktion der Gewerke durch solar-elektrisches Gebäude, Betrieb und Wartung, Brandschutz, BIPV-relevante Normen & Vorschriften.
Ergänzt wird das Werk durch einen Überblick über Anbieter und Produkte für die BIPV. Das Firmenverzeichnis soll den Architektinnen und Architekten bei Ausschreibungen helfen und die Suche nach hochwertigen Produkten der BIPV erleichtern.
Das Fachbuch/E-Book richtet sich an diese Zielgruppen:
Das Fachbuch (ca. 250 Seiten, Hardcover, zahlreiche Abbildungen und Referenzbeispiele) kostet nach Erscheinen 58 Euro. Sie können es aber auch jetzt schon beim Verlag vorbestellen. (HS)
A new quarter is currently being built in the German city of Bad Kreuznach. The buildings supply each other with solar power to achieve climate-neutral operation.
In Bad Kreuznach in Germany’s Rhineland-Palatinate region, the Gewobau housing association is building a climate-neutral solar quarter. This consists of double- and multi-family houses with a total of 28 residential units. The concept, which was designed by the planners of Futurehaus in accordance with the building standard Haus 4.0, not only provides for the installation of photovoltaic systems, but also for the networking of the individual buildings in the quarter.
Buildings networked with each other
This networking drastically increases the share of solar power used locally. This is because the solar systems with a power of 13.2 kilowatts on each roof produce twice as much energy as is needed in the buildings. This is where the neighbourhood concept comes in handy. If consumption in a building is too low, the surplus electricity from the photovoltaic system on its roof is fed into the shared grid. This not only supplies the electricity consumers in the flats, but also the heat pumps that provide space heating and hot water in the buildings.
Storage and electric cars as electricity consumers
If there is no consumer to be found in the buildings, the electricity flows into a storage unit with a volume of 210 kilowatt hours, which is also used by all the buildings. This electricity can then also be used to charge electric cars at the three charging stations in the neighbourhood. Feeding it into the distribution grid of the city of Bad Kreuznach is the last option.
Building as sustainably as possible
But climate protection already plays a decisive role in the construction of the buildings. Last year, for example, Futurehaus built a production line in Bad Kreuznach just two kilometres from the building site, where the prefabricated components are produced. This saves expensive transport routes and keeps the ecological footprint as small as possible. In addition, the buildings are constructed using a CO2-reduced solid house concept based on pre-installed wooden chipstone walls with a concrete core. This is of course complemented by a modern technology package including smart control home concepts in the flats, which reduces energy consumption and increases comfort.
Positive effect on the CO2 balance
The low energy consumption, which is also covered by solar power, ensures that the whole quarter has a positive effect on the CO2 balance, which also includes the construction of the building. Scientists at the University of Darmstadt are currently calculating when this effect will occur. Thomas Sapper, CEO of Futurehaus, expects this threshold to be reached 20 years earlier than with conventionally built houses.
Affordable housing in the solar quarter
For the city, which is co-owner of the housing association, it is also important that living in the new quarter is affordable. But Gewobau is already assuming that future residents will not only benefit from the low service costs. The rents will be in the affordable range at around 8.50 to 9.00 euros per square metre.
The concept even has regional appeal. Futurehaus is already planning the next climate-neutral solar quarter. It is to be built in neighbouring Sprendlingen. (su)
IEA SHC publishes product gallery for the solar building envelope
A new product gallery shows solutions for the solar activation of building shells. In addition, an analysis of the weaknesses and strengths, the opportunities and risks was prepared for each one.
The researchers of the Solar Heating and Cooling Programme (SHC) of the International Energy Agency (IEA) have created an online gallery for building-integrated solar products. It contains photos and technical descriptions of 30 innovative solutions for the solar building envelope.
For each one, the researchers have also prepared a so-called SWOT analysis, i.e. an analysis of the strengths, weaknesses, opportunities and threats. „We worked out the SWOT matrix for each product or prototype in close cooperation with the technology providers or developers,“ describes Roberto Fedrizzi, coordinator of the international research platform Building Integrated Solar Envelope Systems within IEA SHC. „SWOT is a method with the aim of raising awareness of opportunities as well as critical aspects that can affect the market success of a product“.
Speeding up the construction process
The portfolio includes not only solar modules for building integration, but also solar air heating systems, water-operated solar thermal collectors, motor-driven shading solutions and electrochromic window panes. „The online product gallery shows prefabricated, multifunctional solutions that integrate space heating, cooling and ventilation into the building envelope as much as possible, thus speeding up the construction process,“ explains Fedrizzi.
New solutions and materials
It is not only about new ways to energetically activate the building envelope, but also about showing new materials for existing possibilities. This should also drive product innovations. Although the focus of the gallery is on the mass market, it is also a forum for the presentation of new materials. However, some custom-made products and prototypes will also be presented.
Tubesolar and Zinco combine photovoltaics with green roofs
Module manufacturer Tubesolar and Zinco are cooperating to implement green roofs with photovoltaics. Both companies see huge potential for the solution.
The manufacturer of special solar modules Tubesolar has decided to cooperate with the provider of green roofs Zinco to further promote the combination of both solutions. The cooperation is beneficial for both solutions. This is because it opens up completely new possibilities for photovoltaic systems on green roofs. On the one hand, according to Zinco, around seven million square meters of roof area are greened every year just in Germany. However, in order to leverage their potential for generating and using solar power on site, an additional photovoltaic system is required.
Light for the plants on the roof
This is where Tubesolar’s solution can show its advantages. This is because the modules are not flat panels, but consist of slim tubes that enclose the actual solar cells. The thin-film solar cells are in turn curved so that they fit inside the tubes. Several of these tubes are combined to form a module. The cylindrical shape and the spaces between them allow water and light radiation to reach the vegetation below over a large area. In addition, less snow remains on the tubes, so they also generate electricity in winter.
Eliminating competition for space
In addition, the lightweight modules offer weight-specific structural advantages as well as a significantly smaller surface area for wind to attack, which means that the elevation and ballasting can be dimensioned smaller. Dieter Schenk, managing director of Zinco, additionally sees Tubesolar’s photovoltaics as a solution to the previous problem of competition for space between green roofs and photovoltaics.
200 megawatts of potential
For Tubesolar, the building market is a new business model. This is because Tube Solar has so far focused on agriphotovoltaics, which combines agricultural use with solar power generation on farmland. But CEO Reiner Egner sees huge potential here. Both project partners expect to have to serve a market with a total volume of about 200 megawatts of solar power capacity just in Germany. (su)
My PV activates components of commercial buildings with heat from solar power
My PV has further developed previous approaches to store heat in the building structure and adapted them to the concept of the all-electric building. The company is implementing the prototype in its own new headquarters building.
The manufacturer and planner of solar-electric heating systems My PV has developed a solution to implement concrete core activation on a purely electrical basis as well. Component activation itself has often been realised when it comes to constructing sustainable buildings. The principle is simple and effective: underfloor heating pipes are laid in the walls and ceilings, which provide a more pleasant climate in the building than point heat sources.
Storing surplus solar power on site
My PV adopts this approach, except that it uses electric underfloor heating instead of heating pipes. This is also operated with a solar array on the roof or in the façade of the building. The advantage is not only a cheaper implementation. Electric underfloor heating saves the costly piping from the heat generator to the rooms of the building. In addition, there are no transport losses because the solar energy is first converted to heat in the electric underfloor heating system. „In addition, concrete is an excellent heat accumulator due to its high mass density,“ knows Gerhard Rimpler, CEO of My PV. This means that surplus solar power can be stored directly in the concrete mass in the building base by means of component activation.
Power controller regulates the use of solar energy
This is because the solid building component absorbs the heat and releases it again with a time delay. This means that the electricity does not have to be fed into the grid. At the same time, peak loads are smoothed out. The whole system is controlled by the AC Thor power controllers from My PV.These regulate the heating output based on the solar power output and the consumption in the building and can thus optimally utilise the solar energy from the roof and the façade. Another advantage is that the solar-electric heat generation is completely silent and maintenance-free.
Implemented for the first time in a commercial building
My PV is implementing the concept for the first time in its own company building, which the firm is newly constructing in Sierning, Upper Austria. „It goes without saying that we are also proceeding completely according to our guiding principle of ‚cables not pipes‘ in our new company headquarters,“ Rimpler emphasises. The construction of the new domicile is progressing with great strides and so the component activation too. For this purpose, the technicians laid the electric heating wires in March and then poured them into the 25 to 50 centimetre thick foundation.
Energy comes from solar systems on the roof and façade
The electricity is supplied by two solar systems – one on the roof and one on the façade. Together, the two generators produce 100 kilowatts and enough surplus to be stored in the base by a power-regulated electric heater with an output of 40 kilowatts. That is a multiple of the actual heating load of the building. Due to the low-energy house standard, this is 14 kilowatts. But the excess energy can be temporarily stored by the building component activation and released again later.
Cost savings of 67 percent possible
My PV expects significant cost savings due to the storage option directly in the building structure. According to the planners‘ calculations, the costs for electricity and water for the building with a floor area of 858 square metres are expected to be around 2,100 euros. „That is 67 percent less than for company buildings of a similar size with conventional heating technology,“ Gerhard Rimpler knows. „To operate a company building of this size so cheaply is a novelty,“ he emphasises.
For detailed information on the benefits and implementation of all-electric buildings, visit Solar Age’s library. (su)
Austria announces state prize for sustainable architecture
The Austrian federal government is again awarding the State Prize for Architecture and Sustainability this year. High aesthetic requirements meet climate protection.
The Austrian Federal Ministry for Climate Protection, Environment and Energy (BMK) announces the State Prize for Architecture and Sustainability for the seventh time. With this award, an international jury honors outstanding and, above all, future-oriented architectural projects. They must meet strict criteria in terms of building culture, efficiency, supply, mobility, redensification and economical use of land and resources.
No fossil fuels allowed since 2020
The Austrian Klimaaktiv standards are applied here. Since 2020, these have not allowed the use of fossil fuels in new buildings and renovations, and have set strict efficiency limits. In the Settlement and Neighborhoods category, the jurors are focusing on the interconnection of several buildings. High aesthetic standards are required in both cases, as are innovative solutions in terms of climate protection and sustainability.
Submission until May 31
Interested architects, developers or building owners can submit their projects for the competition on the State Award website until May 31, 2021.. They can submit buildings constructed between January 2018 and May 2021. All types of uses and building types are eligible. By the end of June, the jury will follow up with a comprehensive preliminary review of the submitted projects. This will be followed by a multi-stage selection process by the jury. As in previous years, the Federal Ministry is expecting lively interest on the part of architects and specialist planners. (su)
Der Berliner Senat prämiert herausragende architektonische Lösungen der solaren Architektur in der Stadt. Bewerbungen sind noch bis zum 20. April 2021 möglich.
Die Berliner Senatsverwaltung für Wirtschaft, Energie und Betriebe zeichnet innovative und gestalterisch herausragende Gebäude in der Stadt mit einem eigenen Architekturpreis aus. Neben der hohen architektonischen und städtebaulichen Qualität der Projekte steht auch die mit ihr kombinierte solare Energieversorgung der Gebäude als Kriterium im Mittelpunkt. Die Solaranlage muss dabei ein fest installierter Bestandteil des Gebäudes sein. Es zählen hier sowohl Photovoltaik- als auch Solarthermieanlagen.
Neu-und Bestandsbauten können teilnehmen
Der Wirtschafts- und Energiesenat nimmt ab sofort Bewerbungen um den Preis entgegen. Bewerben können sich Architekten und Eigentümer, deren Bestandsgebäude oder Neubauten den Teilnahmekriterien entsprechen. Neben Wohn- und Gewerbegebäuden können auch Gebäude mit öffentlicher Nutzung wie Schulen teilnehmen. In allen Fällen spielt die Größe des Projekts keine Rolle. Ausgeschlossen sind nur Verkehrs- und Industriebauten.
Es winken 1.000 Euro Preisgeld
Interessenten können bis zum 30. April 2021 ihre Bewerbung auf einer eigens eingerichteten Webseite des Masterplans Solar City Berlin einreichen. Eine Jury ermittelt unter den Teilnehmern die besten Projekte. Dem Gewinner winkt ein Preisgeld von 1.000 Euro. Der Zweitplatzierte bekommt 700 Euro und als dritter Preis gibt es 500 Euro. Zudem sind auch Anerkennungen ohne Preisgeld möglich. (su)
In Leonberg in Stuttgart, the residents of a passive house have switched to self-produced solar power. The systems are attached to the building envelope and are located on the roof. An electricity storage system ensures plenty of self-consumption.
The passive house standard is characterised above all by a building’s low heat demand. However, if this demand is covered by a heat pump, there is a corresponding electricity demand for this part of the so-called sector coupling. Renewable electricity – produced locally if possible – is also necessary for the electrification of mobility.
Challenges mastered with special solutions
To meet these challenges and complete the sustainable building concept, a family in Leonberg near the German city of Stuttgart has equipped their single-family house with solar façades. An additional generator is located on the green monopitch roof of the building. You can read how the planners solved the challenges of installing the systems in a complete description of the project, which you can find in the database on Solar Age. You can use this free of charge after registering as a Club Member.
Storage provides for more self-consumption
The solar systems achieve a total power output of more than 15 kilowatts. An additional electricity storage unit from E3/DC provides for more self-used solar electricity. The S10 E Pro can temporarily store 19.5 kilowatt hours, which can be used in the evening to operate the heat pump and supply the household appliances in the building. The electric car is also partially charged with the storage system. In addition, it has an emergency power supply so that the family can maintain the heat supply in the event of a grid cut.
Planners expect 74 percent self-sufficiency
The solar systems on the building envelope and on the roof started operation on 8 January 2021. Despite the cold and sunless January, the solar systems managed to cover 21 percent of the electricity consumption in that month. In February, the solar panels supplied 64 per cent of the building’s electricity needs. In March, the share of self-supply with solar power rose to about 90 percent. The family is fully satisfied with the result of about 50 percent self-sufficiency on average during the two and a half winter months. The planners have calculated that the building can supply itself with 74 percent solar power over the whole year – at least with the current constellation. If the family acquires a second electric car as planned, it will then be necessary above all to expand the capacity of the storage system. (su)
Solar Power Europe welcomes applications for solar awards
Solar Power Europe has launched the application phase for this year's Solar Awards. For the first time, there are three different competitions.
The European industry association Solar Power Europe (SPE) is organising this year’s Solar Power Summit from 10 to 12 May. This is planned as an online event due to the corona pandemic. Nevertheless, there will be the coveted solar awards. The association is accepting applications.
Young companies‘ ideas wanted
Interested parties can apply for three different prizes. First, SPE will present a Solar Startup Award. This is for the best new approaches to solar energy. Young companies are called upon to present their ideas for advancing the energy transition with the sun. After all, there is prize money of 5,000 euros, donated by Enerparc, which can help to bring the idea to market. Start-ups with no more than 20 employees can still apply until 21 April on the award’s registration page.
Sustainability takes the spotlight
With the Solar Sustainable Award, SPE for the first time honours innovative approaches for more sustainability in the production and installation of solar systems. The goal: to further reduce the CO2 footprint of solar energy. All companies in the industry, regardless of size, that are undertaking decisive activities in this direction can apply for the Sustainability Award until 26 April. For more details and requirements, please visit the Solar Sustainable Award application page.
Award for a balanced staff
A third prize is awarded by Solar Power Europe for companies‘ efforts in developing a gender balanced workforce. The Solar Gender Champion Award is about rewarding companies and organisations that make significant efforts towards a diverse staff. Applications for the Gender Champion are being accepted by the association until 21 April. SPE has also prepared a separate application page for this award, where you can find all the information. (su)
Solar Decathlon Europe 2023 takes place in Bucharest
The student competition around modern and solar architecture will be held in the Romanian capital in September 2023. Interested student groups from European universities and colleges can apply.
The Solar Decathlon Europe (SDE) in 2023 will take place in the Romanian capital Bucharest. The Energy Endeavour Foundation together with the Asociatia Solar Decatlon Bucuresti (EFdeN) are organising the student architecture competition around solutions for modern and future-oriented construction in September 2023. Students of architecture, building engineering and building planning are called to present their solutions on how buildings can be constructed and operated sustainably in the future.
Starting signal for applications
With the announcement of the location, the starting signal has also been given for the interested student groups to develop their buildings. They have about a year time to do so and then have to submit their concept to the organisers of SDE23. A jury will select the most promising proposals. These will then build their buildings as part of the Solar Village in Bucharest in the year of the event.
Buildings must prove themselves
Afterwards, the building concepts have to prove themselves in ten different disciplines.This is not only – but also – about the aspects of design, but above all about how sustainably the houses are constructed and operated. One part will therefore deal with the energy balance during use, so that the buildings cannot do without their own energy generator. This is usually photovoltaics – in some cases also in combination with solar thermal energy. The students have to develop innovative heating, air-conditioning and energy concepts for their buildings that allow them to be as self-sufficient as possible. Of course, this requires optimal integration of the solar energy generators into the building envelope.
The student teams can find further information and contacts for the application on the SDE23 website. (su)
The new solar plant on the roof of the town hall in Dettenheim near Karlsruhe is one element of the town's climate strategy. Step by step, the whole potential for solar power production is to be exploited.
In the municipality of Dettenheim in the Karlsruhe district in southwest Germany, the administration is showing the way by setting a good example when it comes to the energy transition in the town. The latest project has just been completed. On the roof of the town hall, solar panels now generate electricity for the building and the community. A total of 140 panels have been mounted on the roof by the craftsmen of the project developer Wirsol Roof Solutions from Waghäusel. The 46.2 kilowatts of power take up 236 square metres of roof space. The planners expect an annual yield of 48,900 kilowatt hours.
More yields than expected
The photovoltaic system on the roof of the town hall is an important piece of the climate protection strategy that the Dettenheim administration is developing together with the district’s environment and energy agency. „Local, environmentally friendly energy production is of great importance for our community, both environmentally and economically,“ emphasises Mayor Ute Göbelbecker. She is enthusiastic about the plant, which even delivers more yields than she had expected in advance.
Municipality leads by example
But it is not the last system that the municipality will have installed. „In Dettenheim, as in most other municipalities in the district, there is great potential for photovoltaics on public, private and commercial roof surfaces,“ explains the mayor. „Dettenheim is setting a good example with the photovoltaic system on the roof of the town hall and its measures to increase the proportion of photovoltaics in the municipality,“ adds Birgit Schwegle, Managing Director of the Environment and Energy Agency District of Karlsruhe (UEA).
Climate protection campaign launched
In order to make use of the potential, the municipality has launched a campaign for the further expansion of photovoltaics, which is accompanied by UEA in an advisory capacity. „We also support other municipalities as well as companies with our photovoltaic roof systems in implementing their climate protection strategies and are convinced that decentralised energy supply, with photovoltaic systems on as many free roof surfaces as possible, is a key measure for climate protection,“ says Johannes Groß, Managing Director of Wirsol Roof Soluntions. „Even for communities that are not in a good financial position, especially in the current situation, roof systems offer an opportunity to save electricity costs as well as a long-term source of income through feed-in or leasing. With a lease and investment model, the costs incurred can be amortised within a short time,“ emphasises Groß. (su)
New Video: Solarwatt presents solutions for BIPV at the Building Envelope Forum
Solarwatt presented its solutions for building-integrated photovoltaics (BIPV) at the Building Envelope Forum organised by Gentner Verlag. The recording of the presentation is now available online.
With the digital specialist forum Building Envelope in Focus, Gentner Verlag offered a new information service for architects, energy consultants and installers on March 9, 2021. Here they were able to bring themselves up to date, not only with regard to the legal situation in the building sector. Companies also presented concrete products with which architects can implement modern building envelopes.
In-roof solution and small module for terrace roofing
For example, the module manufacturer Solarwatt also presented its solutions for the solar building envelope at the Building Envelope Forum. The Dresden-based company has an extensive portfolio for all building areas. The Easy In, for example, is an in-roof solution for the installation of solar roofs in new buildings or renovations. For façades and overhead glazing, Solarwatt also has the Vision 36M module in its portfolio. Axel Lellau, Solarwatt’s sales manager, sees the application here primarily in the area of carports and terrace roofing.
Standard module with building authority approval
Solarwatt is also focusing on the overhead glazing segment with the new Vision 60M Construct module. Last year, the standard-size panel received general building authority approval (abZ) from the German Institute for Building Technology (DIBt), which drastically speeds up the planning and construction process. This is because approval is no longer necessary in individual cases. In addition, planners are on the safe side that they can also use the module for overhead glazing and in the façade.
GSW Sigmaringen has built a modern residential quarter in Berlin Adlershof. This is impressive not only because of its modern architecture, but also because of an energy concept for the future.
The housing company GSW Sigmaringen has built a new residential quarter in the Adlershof district of the German capital, Future Living Berlin, which allows a view to the future of urban life. This starts with the architecture, which is not only largely barrier-free, but above all open. This is intended to promote interaction between the residents and enable cross-generational living in the quarter.
However, the modern architectural concept goes beyond design aspects. A concept was implemented in the buildings that allows digitally networked living in the neighbourhood. The entire energy concept is also integrated into this digital infrastructure. At its heart are the photovoltaic systems on the roofs of the buildings. Since the space available is limited, the planners decided to use efficient modules supplied by the project partner Panasonic.
Solar modules supply the energy
The 600 panels have a combined power output of 195 kilowatts. Most of the electricity is used locally. The energy provider Polarstern is the operator of the solar systems and sells the electricity to the residents of the buildings as part of a tenant electricity project. But in order to be able to use even more solar power on site, Panasonic has also integrated a comprehensive energy management system designed specifically for such neighbourhood solutions. This enables not only the integration of different households and consumers, but also sector coupling. Because the modules supply the energy for the 17 heat pumps that power the heating systems of the 90 apartments in the neighbourhood. They also provide the hot water for the residents.
Priorities set
In order to increase self-consumption, the entire energy management system relies on weather forecasts on the one hand and on consumer requirements in the buildings on the other. Thus, the priority of solar power consumption is set on heating and hot water supply. This means that the solar electricity that is not used directly by the residents first flows into the heat pumps. If these are sufficiently supplied, the excess electricity flows into a battery storage with a capacity of 156 kilowatt hours. This can be accessed by all buildings and used to supply the residents or the heat pumps with electricity if the yield from the solar systems on the roofs is not high enough. In addition, there are electric cars that are charged in the underground garage and are also mainly supplied with excess solar power.
Energy management forecasts consumption
It is not only the use of weather data to forecast the yield that is important. Rather, feedback with further information is also crucial. This is because energy management does not just adapt to the respective season and forecast consumption behaviour accordingly. It also receives information on whether and how many residents are currently at home and can thus control the respective priorities, i.e. whether more energy is needed for the residents‘ electrical devices or for heating and hot water, or whether the excess electricity is better stored in the batteries of the electric cars.
How much of the energy is used on site You can find in the complete description of the Future Living Berlin that is included into the project database of Solar Age. There You can find further examples of modern solar architecture.
A current guide informs homeowners, but also energy consultants, architects, planners about the topic of infrared heaters. In combination with photovoltaic systems, the devices can provide a large amount of space heating for entire buildings without emissions.
The German Federal Association for Infrared Heating (BVIR) and IG Infrarot Deutschland have jointly published a new guide on infrared heating. Such forms of direct heating are often known as radiant heaters in bathrooms. „However, infrared heaters can also heat entire buildings, which many building owners are not yet aware of,“ emphasises Lars-Henric Voß, first chairman of IG Infrarot Deutschland.
From technology to planning
The 50-page guide was written by Peter Kosack, head of the Infrared Working Group (AKI) at the Technical University of Kaiserslautern. It provides information about the technology and dispels contradictory statements that circulate in public. It offers end users orientation and brings energy consultants, architects, planners and engineers up to date on the subject of infrared heating. The content ranges from the physical basics of infrared radiation and infrared heaters to how they function and how they can be used as supplementary and main heaters, to instructions for professionals on the dimensioning and installation of such direct heating systems. The guide also takes into account the legal requirements and standards. At the end of the guide, the author briefly and concisely answers the most frequently asked questions about infrared heaters.
Solar yield can be credited
IG Infrarot and VIR assume that the share of infrared heaters in the heating market will increase due to the improved building envelope. „System concepts with infrared technology will be the solution for certain building projects, whether in new construction or renovation, for single-family houses, terraced houses, small apartment buildings, but also commercial enterprises,“ says Voß. He points out that the technology is ideal in combination with a photovoltaic system. This is because, according to the Building Energy Act, the solar yield on the roof may be balanced to a certain extent with the heating demand and the total heat demand.
Pay attention to the radiation efficiency
However, end customers should make sure that they buy the right heaters. „Many heaters that are labelled as infrared heaters in advertisements should not, strictly speaking, be called such,“ the author of the guide knows. „We also provide information on this.“ Orientation is offered here by the radiation efficiency as an important classification of infrared heaters. Only when this is above certain limits is it an infrared heater.
The guide to infrared heating is available for free download on the websites of IG Infrarot and BVIR. (su)
Solar system on north-facing roof supplies 74 percent of home electricity
Is a solar system on a north-facing roof worthwhile? Opinions differ. With a well-designed system and suitable general conditions, such a thing is definitely worthwhile.
Solar systems on the north side of buildings have hardly been considered so far. This is not to be dismissed, since north-facing roofs are usually in the shade all day long. A project near Horb on Neckar in Germany shows that it is certainly an option. There, the installation company Adrex installed a system on a north-facing monopitch roof of a single-family house last year.
Note the angle of inclination
Since the roof slopes only slightly to the north, it was certainly eligible for installation. „The flatter the better,“ says Pascal Bolsinger, CEO of Adrex, with regard to the pitch angle of the roof. If the roof is too steep, the modules are in the shade for too long. On the other hand, the roof must not be too flat. An angle of inclination of 7 degrees is the limit for Bolsinger. Because if the roof becomes even flatter, rain and melted snow can no longer drain off and the self-cleaning effect no longer works either. Then the modules would have to be elevated, which is an aesthetically questionable solution on a monopitch roof of a single-family house.
Modules installed parallel to the roof
This was not necessary on the building in Horb. The roof slope of seven degrees was still suitable, so that the self-cleaning effect would still work, but the modules would still produce a considerable yield on the other side. This is why the craftsmen were able to install the 31 Panasonic modules parallel to the roof. With the monocrystalline ones, they also fit in well optically with the surrounding roof. The system achieves 9.92 kilowatts. More power would have fit on the roof. But then the homeowners would have had to pay the pro rata EEG levy on their own consumption, which was still in force at the time.
Yield comparable to south-facing system
In the meantime, the yield data is available after one year of operation. And they are impressive. The modules delivered 10,467.57 kilowatt hours over the entire year. This is quite comparable to a south-facing system. „We normally expect a specific yield of about 1,000 to 1,100 kilowatt hours per kilowatt,“ says Bolsinger.
Module technology plays out its advantages
He attributes the above-average yield to the heterojunction technology of Panasonic’s Kuro modules. This combines thin-film and crystalline solar cells. „The modules still work very well even with indirect irradiation and diffuse light. In the warm summer months, the extremely low temperature coefficient of the Panasonic modules also shows its effect,“ Bolsinger knows.
Electricity storage increases self-consumption
The higher investment costs for the premium modules have paid off. Because in combination with an additional electricity storage system with a capacity of 7.5 kilowatt hours, the family of three living in the house was able to supply itself with almost 74 percent of the solar electricity. The generation costs of the photovoltaic electricity are about eleven cents per kilowatt hour. The family wants to increase the share of self-consumption with an electric car in the near future. After all, 3,500 kilowatt hours per year are sufficient for the electrical consumers in the house alone. (su)
Urban energy transition: Planning tool for solar city districts developed
German research institutes have created a planning tool for the development of urban quarters of the future within the framework of a joint project. The main aim is to bring volatile energy generated in the neighbourhoods into line with consumption.
A consortium of different German research institutes has developed a planning tool for solar and sustainable neighbourhoods. The aim of the tool is to implement decentralised, cross-sectoral and, above all, renewable supply of electricity, heat and fuels in urban agglomerations. This is because municipalities can now use it to calculate how the energy supply can best be designed for individual districts. This is because the software makes it possible to compare different scenarios for energy supply in neighbourhoods where not only private households, but also commerce and industry are present.
Linking consumption and generation
The development focused on various questions. Is it cheaper to completely refurbish a neighbourhood in terms of energy or is it more worthwhile to invest specifically in renewable energies? How can consumption and generation be intelligently coordinated through networking and communication? And how do solar plants, wind farms, biomass plants, combined heat and power plants and storage units have to interact so that neighbourhoods can be run on 100 percent renewable energy all year round?
Tested in five neighbourhoods
To answer these questions, the researchers have developed various planning and control tools as well as services, which they have tested using different sample neighbourhoods in five cities in south-west Germany. The sample neighbourhoods in Stuttgart, Mannheim, Mainau, Rainau and Schwieberdingen were chosen to cover a wide variety of building stock, land area and existing energy infrastructure. In this way, the researchers were able to test the newly developed planning tools under very different framework conditions.
Controlling consumption via financial incentives
For example, the researchers at the Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) have developed, among other things, a neighbourhood control system. It works exclusively via financial incentives and coordinated schedules and does not require any central control commands. The sovereignty over the control of the individual photovoltaic systems, combined heat and power plants and heat pumps remains with the system operator. „This results in an individual, yet jointly coordinated generation and consumption behaviour in the neighbourhood across sectors,“ explains Jann Binder, head of the Photovoltaics: Modules Systems Applications department at ZSW.
Minimising consumption peaks
The researchers describe the advantage of their approach as follows: „In this way, energy acquisition costs as well as consumption peaks for the whole system can be minimised in a grid-serving and low-emission manner. The developed method of financial incentives enables a coordinated energy use of digitally networked actors that goes beyond the pure self-optimisation of the individual plants.
Flexible design of plant portfolio and consumption
Using such approaches and services within the neighbourhood, planners and operators of plants, grids and neighbourhoods can design the plant portfolio for energy generation, energy conversion and storage in a modular and flexible way according to demand and optimise it continuously during operation. Because the need for this is growing, as the researchers emphasise. After all, with the increasing number of electric cars and electric heaters, for example, the challenges are increasing, especially for the distribution networks that spread the energy in the neighbourhoods. „They have to receive the renewable electricity that is dependent on the weather,“ the researchers describe the challenge, „In addition, power peaks that occur on the consumer side are to be avoided. Shifting consumption and intermediate energy storage help to improve the balance between generation and consumption, which is then immediately reflected in reduced costs.“
The research project „Urban Energy Systems and Resource Efficiency“ (Ensource) is part of the Centre for Applied Research at Universities (ZAFH). In addition to the ZSW, the universities of Aalen, Biberach, Heilbronn, Mannheim, Pforzheim, Reutlingen, Rottenburg and Stuttgart University of Applied Sciences were also involved. The University of Stuttgart and the Albert Ludwig University of Freiburg as well as the Fraunhofer Institute for Solar Energy Systems (ISE) also contributed their expertise to the development of the planning tool. You can find out what this looks like in concrete terms on the research project’s website. (su)
Germany adopts obligation to prepare charging infrastructure in buildings
In future, all new buildings in Germany must be prepared for the installation of charging points for electric cars. This also applies to the renovation of existing buildings.
The German Federal Parliament (Bundesrat) has approved the Building Electric Mobility Infrastructure Act (GEIG). It was already passed by the German parliament on 11 February 2021, after the bill had already been introduced to parliament on 5 May 2020. But after almost a year, the way is now open for the development of charging infrastructure for electric cars in urban regions. Because that is what the law aims for.
At least prepare charging infrastructure
It stipulates that every newly constructed residential building must at least prepare for the installation of charging points. If the builder – be it a developer or a housing association – does not immediately install charging points, he must at least prepare the line infrastructure in the form of empty conduits, cable protection pipes, floor installation systems, cable trays or comparable measures. A place for the necessary smart metering systems and charging management systems must also be prepared.
Requirements tightened
These measures must be provided for in all new residential buildings that are built with at least five parking spaces. The Bundestag thus tightens the original bill of the federal government and the governing coalition. There, the minimum was set at ten parking spaces. The Bundestag has also lowered the minimum for non-residential buildings. Now at least every third parking space must be prepared for e-mobility. In addition, at least one charging point must be installed. In both cases, it is irrelevant whether the parking spaces are constructed in the building – for example in an underground car park – or next to the building.
Preparation for refurbishment
The obligation to take preparatory measures for the installation of the charging infrastructure also applies to existing buildings if they are extensively renovated and the parking spaces are included. Here, the minimum number of ten parking spaces has been retained, from which the regulation applies at all. Exceptions apply here if the costs for laying empty pipes or other measures exceed seven percent of the total investment sum.
Transition period until 10 March
The law is now with the Federal President for signature and will come into force after publication in the Federal Law Gazette. The regulations do not apply to buildings whose building application was received by the building authorities before 10 March 2021. (su)
Zusatztermin: Webinar Vollelektrische Gebäude: Gewerke und Kosten reduzieren
Gemeinsam mit dem österreichischen Anbieter von elektrischen Vollversorgungssystemem für Gebäude my-PV führt die Redaktion von Solar Age ein Webinar zur Planung und Auslegung solarelektischer Haustechnik durch. Aufgrund der großen Nachfrage gibt es einen zweiten Termin.
Architekten, Planer und Immobilieneigentümer bekommen hier einen detaillierten Einblick in das Thema vollelektrische Gebäude. Es geht dabei nicht nur um die technische Planung und Umsetzung, sondern auch um die Wirtschaftlichkeit solcher Energiesysteme. Aufgrund der großen Nachfrage wiederholen die Veranstalter das Webinar am 10. März 2021.
Profitieren Sie vom Fachwissen der Referenten: Im Video erklärt Markus Gundendorfer von My-PV, welche Kennnisse im Webinar vermittelt werden.
Dabei bekommen die Teilnehmer am Webinar antworten auf die wichtigsten Fragen, die aufkommen, wenn es darum geht, erneuerbare Energien bestmöglich in aktuelle Bau- und Wohnprojekte zu integrieren:
– Welche Möglichkeiten gibt es für fassadenintegrierte Photovoltaikanlagen?
– Wie kann die Photovoltaikenergie direkt und sinnvoll im Wohnungsbau ohne aufwändiges Mieterstrommodell angewendet werden?
Zudem werden die Experten des Planungsbüros S&P Elektrodesign den aktuellsten Stand der Technik vorstellen und den Teilnehmern einen Blick über den Tellerrand hinaus gewähren, was bei gut gedämmten Häusern und Wohnbauprojekten schon möglich ist.
Sven Ullrich von Solar Age richtet im Webinar den Blick auf bereits bestehende Lösungen, fassadenintegrierte Photovoltaikanlagen bestmöglich zu nutzen und deren Energie direkt im Haus zu verbrauchen.
Zum Abschluss des Webinars präsentieren die Spezialisten vom My-PV Referenzen, die zeigen, dass sich die Gewerke und Kosten in der Bau- sowie auch in der Betriebsphase senken lassen und gleichzeitig sich der Komfort für den Kunden erhöht.
Profitieren Sie von den Erfahrungen und vom Fachwissen unserer Experten: Mario Mendes, geschäftsführender Gesellschafter bei S&P, einem Planungsbüro, das Haustechnik, Elektrotechnik, Bauphysik und Gebäudezertifizierungen aus einer Hand für Architekten, Baugruppen und Bauträger bietet
Sven Ullrich, Chefredakteur bei Solar Age, einer B2B-Plattform, die Architekten und Bauträger in ihrer beruflichen und unternehmerischen Tätigkeit unterstützt
Reinhard Hofstätter, Trainer bei my-PV, einem auf die Erhöhung des Eigenverbrauchs von Photovoltaikanlagen spezialisierten Unternehmens aus Oberösterreich
In Hameln, the first residential complex with the Energiesprong approach of serial energy refurbishment of problem houses became prime examples of climate protection in the building sector.
The three apartment blocks from the 1930s with its building parts in Hameln, Westphalia, had long been out of date and were in need of major renovation anyway. Using the so-called Energiesprong principle, the craftsmen from Ecoworks have now brought them up to a net zero energy standard. The approach developed in the Netherlands for the energetic improvement of existing buildings provides for the houses to be renovated serially in a digitalised construction process with prefabricated elements for façade, roof and building technology in a climate- and tenant-friendly way.
Buildings first fundamentally refurbished
Ecoworks, a construction company and energy supplier based in Berlin, has been pursuing this approach for some time. With the support of the German Energy Agency (Dena), it is implementing the first serial refurbishment projects in Germany. In Hameln, the craftsmen first cleared the houses, which had been empty for five years, of sponge and mould. After a thorough interior renovation, they installed prefabricated façade and roof elements as well as standardised building techniques.
Prefabricated façade and roof elements
The façade elements with larch wood panelling were produced and delivered by a timber construction company in Brandenburg. The elements, each 2.85 metres high and 36 centimetres thick, then only had to be mounted on the façade. In addition to the actual outer shell and a thick insulation package made of recycled glass wool, they also contain the windows and decentralised ventilation elements with heat recovery. The roof elements were supplied by the German division of Kingspan, an Irish manufacturer of insulation technology and system solutions for building envelopes. In addition to the actual roof covering, they also contain insulation. After that, only the solar power system had to be installed to provide the energy for the building. Because they are heated with heat pumps. They also supply the energy for the ventilation system with heat recovery.
KfW55 standard achieved
After the basement ceiling was also insulated with a 20-centimetre-thick layer, the building achieves the KfW55 standard. This means that the energy consumption of the apartment block is 55 percent lower than required by the German Building Energy Act. Since the photovoltaic modules generate as much energy as is consumed for heating, hot water and electricity in the apartment blocks over the whole year, the complete building ensemble achieves a net-zero energy standard.
500 sensors help with optimisation
In order to reflect this initially balance-sheet figure as well as possible in reality, more than 500 sensors were installed in the three residential buildings. These are used to record the current consumption data in real time and thus help to optimise the heat supply and ventilation of the buildings.
Further developing the Energiesprong approach
In this way, the serially renovated building can prove itself in operation and show that the net-zero energy standard is also possible in existing buildings at manageable costs with the Energiesprong approach. „Now it’s time for us to use the experience and data for the further development of the serial solution,“ emphasises Emanuel Heisenberg from Ecoworks. „The pilot illustrates that innovation in the building sector is worthwhile,“ adds Andreas Kuhlmann, CEO of Dena, with regard to the flagship project. „From the experience gained here, technologies and processes can be improved step by step. Costs will continue to fall through scaling and innovations.In this way, we are moving step by step from the pilot phase to series production. For companies in the construction industry, a forward-looking and profitable market is emerging here. After the radical changes in mobility and renewable energies, the construction industry must now deliver the next major climate protection innovation,“ says Kuhlmann confidently. (su)
New design façade created for research and innovation building
Students from the Lucerne University of Applied Sciences and Arts have created the design for the solar façade of the Nest research and innovation building as part of a workshop. The winning design highlights the dynamics of glass.
The Nest is a modular research and innovation building on the campus of the Swiss Federal Laboratories for Materials Testing and Research (Empa) in Dübendorf, Switzerland, just outside of Zurich. Here, new technologies, materials and systems are tested and further developed under real conditions. One of these technologies will be added in the next few months. Because part of the façade will be covered with printed solar modules.
Design competition organised
To find the right design, Empa organised a competition. During a two-week workshop on the Empa campus, students from the Lucerne University of Applied Sciences and Arts (HSLU) designed surfaces for photovoltaic modules as design objects for the façade of the Nest. These designs simulate the actual solar modules. For these are printed with the graphic designs of the winning design and integrated into the façade of the Nest. The central criterion was that the design should visually integrate into the research and innovation building.
Design to be implemented this year
In the opinion of the six-member jury, Lynn Balli succeeded best. In her design entitled „Glasklar“ („Crystal Clear“), she combined eight individual works of art, elegantly highlighting the dynamics of glass, as the jury explained their decision. The winning design was awarded a prize in an online event. In the next step, modules with this design will be printed and integrated into the façade of the Nest later this year.
Beforehand, the participants of this event could also choose their favourite. The audience decided in favour of Florence Schöb’s design. With her creation entitled „Vernetzt“ („Networked“), she implemented a curved and lively structure of different coloured lines. (su)
Berlin public utilities combine photovoltaics with green roof
A photovoltaic system was installed on a new archive roof on an archive building at the Humboldt University in Berlin. The electricity is almost completely consumed in the building.
The Berlin public utility company has built a solar system on the new green roof of the Humboldt University (HU) storage library. In the building on the edge of the Science Park in the Berlin district of Adlershof, the university stores books, files and other archive materials. Since these have to be stored under constant climatic conditions, there is a high demand for electricity. Part of the 70,000 kilowatt hours consumed in the building each year is supplied by the new solar system.
90 per cent self-consumption
The 238 monocrystalline modules achieve a total power of 81 kilowatts. This means they can cover 22 percent of the building’s needs. Since the solar system generates electricity when the building consumes the most, 90 percent of the solar energy produced can be used. „We are delighted to have another new photovoltaic system on the roofs of Humboldt University. We see it as another step on the way to a climate-neutral university,“ says Catrin Hedwig, head of the HU’s Technical Department. With this approach, the HU wants to make its contribution to climate protection. The green roof on which the solar generator is placed also contributes to improving the city’s climate.
Lease model developed
Berliner Stadtwerke built the system as part of a lease model. This means that the public utility company installs, services and maintains the generator. The Science and Research Department of the Berlin Senate Chancellery, which is responsible for the universities, leases the roof of the university building for a symbolic amount. In turn, the university leases the photovoltaic system. In this way, it can consume the electricity in the building itself without having to pay the full EEG levy.
Further systems in planning
With this and the grid electricity saved, the commissioning and maintenance of the system is not associated with any additional costs for the university. „We are very happy that the HU is already the third university in Berlin to join us in taking another step towards energy efficiency,“ emphasises Kerstin Busch, CEO of Berliner Stadtwerke. She refers to similar projects with the Berlin University of Applied Sciences (HTW) in the Köpenick district and the Alice Salomon University in Hellersdorf. In addition, the Stadtwerke are in discussion with the building owners regarding the installation of further solar plants with this model. (su)
Vollelektrische Wärmeversorgung in Gebäuden stößt auf großes Interesse
Das Webinar zur vollelektrischen Gebäudeversorgung, das My PV und S&P Elektrodesign zusammen mit Solar Age durchgeführt hat, erfreute sich reger Teilnahme. Aufgrund der großen Nachfrage und des begrenzten Platzes im Webinarraum wird es am 10. März wiederholt.
Zunächst konnten sich die Teilnehmer im Webinar zum Thema Solarfassaden informieren. Hier ging es nicht nur darum, welche ästhetischen Möglichkeiten inzwischen existieren, sondern vor allem wie es um die Wirtschaftlichkeit der Solarfassade steht und welche Vorteile sie gerade für die Wärmeversorgung im Winter mitbringt.
Lange Rohre sorgen für hohe Verluste
Im Anschluss daran hat Michael Schalk von S&P Elektrodesign die Teilnehmer auf den aktuellen Stand der Entwicklung der Haustechnik gebracht. Er hat zusammengefasst, wie derzeit in der Regel die Wärmeversorgung in Gebäude geplant und installiert wird. Zentral ist hier inzwischen die Warmwasserversorgung, da die Gebäude besser gedämmt sind als früher. Hier entstehen bei der zentralen Versorgung riesige Verteilverluste. „Deshalb sind dezentrale Lösungen besser als zentrale Lösungen”, resümiert Michael Schalk. „Es ist energetisch immer besser, das Warmwasser dort zu erzeugen, wo es gebraucht wird”.
Planung und Auslegung erklärt
Genau diesen Ansatz verfolgt My PV. Reinhard Hofstätter, Trainer beim Anbieter aus dem oberösterreichischen Neuzeug hat detailliert erklärt, wie das System von My PV ausgelegt und errichtet wird. Hierbei hat er sich zunächst vor allem auf den Mehrgeschosswohnungsbau konzentriert, wo bei einer zentralen Warmwasserversorgung aufgrund der immensen Länge der Rohrleitungen die größte Wärmeverluste anfallen.
Zwei verschiedene Ansätze
Hofstätter hat die beiden Ansätze beschrieben, wie eine dezentrale Warmwasserversorgung hauptsächlich mit dem Solarstrom vom Dach oder aus der Fassade von Gebäuden möglich ist. Die solar aktive Fassade kann hier vor allem bei sehr hohen Gebäuden kräftig mithelfen, den Reststrombezug aus dem Netz zur Warmwasserversorgung zu verringern. Denn in solchen Fällen reicht die Dachfläche in der Regel nicht aus, um die möglichst viel Wärme mit dem Solarstrom zu erzeugen, was essenziell für die Wirtschaftlichkeit einer vollelektrischen Wärmeversorgung ist.
Zweiter Termin am 10. März
Wie diese beiden Ansätze aussehen, erfahren Sie in der Wiederholung des Webinars. Denn aufgrund der großen Nachfrage und der begrenzten Plätze im Webinarraum werden My PV, S&P Elektrodesign und Solar Age die Veranstaltung nochmals durchführen. Wer den ersten Termin verpasst hat, hat am 10. März von 16-17 Uhr noch einmal die Gelegenheit, alles über die Planung und die Vorteile vollelektrischer Wärmeversorgung von Gebäuden zu erfahren.
All-electric heat supply in buildings meets with high interest
The webinar on all-electric heat supply in buildings, which My PV and S&P Elektrodesign held together with Solar Age, enjoyed a large attendance. Due to high demand and limited space in the webinar room, it will be repeated on 10 March.
Initially, the participants were able to inform themselves about the topic of solar façades in the webinar. Here, the focus was not only on the aesthetic possibilities that now exist, but above all on the economic efficiency of solar façades and the advantages they bring, especially for heat supply in winter.
Long pipes cause high losses
Afterwards, Michael Schalk from S&P Elektrodesign brought the participants up to date on the latest developments in building technology. He summarised how heat supply is currently planned and installed in buildings. In the meantime, the hot water supply is crucial, as buildings are better insulated than before. Here, huge distribution losses occur with centralised supply. „That is why decentralised solutions are better than centralised solutions,“ Michael Schalk sums up. „It is always energetically better to produce the hot water where it is needed.“
Planning and design explained
This is precisely the approach taken by My PV. Reinhard Hofstätter, trainer at the provider from Neuzeug in Upper Austria, explained in detail how the My PV system is designed and installed. In doing so, he initially focused primarily on multi-storey residential buildings, where the greatest heat losses occur with a central hot water supply due to the immense length of the pipelines.
Two different approaches
Hofstätter described the two approaches to decentralised hot water supply, mainly using solar energy from the roof or façade of buildings. The solar-active façade can play a major role in reducing the amount of residual electricity drawn from the grid for hot water supply, especially in very tall buildings. In such cases, the roof area is usually not sufficient to generate as much heat as possible with the solar power, which is essential for the economic viability of an all-electric heat supply.
Second date on 10 March
You can find out what these two approaches look like in the repeat of the webinar. Due to high demand and limited places in the webinar room, My PV, S&P Elektrodesign and Solar Age will hold the event again in German language. Those who missed the first date will have another opportunity to learn all about the planning and benefits of all-electric heat supply for buildings on 10 March from 4-5pm.
Heat pumps offer advantages in tenant electricity compared to CHP
More and more tenant electricity projects are being realised as a combination of photovoltaics and heat pumps. This allows more solar power to be consumed on site. But this has other advantages as well.
More and more tenant electricity projects combine electricity and heat supply. This is the experience of the Munich-based green energy supplier Polarstern, which also focuses on the tenant electricity segment. Until now, the combination of combined heat and power units (CHP) with solar power systems was the common practice. In the meantime, heat pumps are becoming more and more established as a combination partner. This has economic advantages and also supports climate protection in the building sector, emphasise the planners at Polarstern.
Economically attractive solution
The use of heat pumps offers many advantages. For example, locally generated solar power can be used in different systems and for different purposes, and it can be counted towards the primary energy demand. This gives homeowners easier access to subsidies. In addition, rising CO2 prices do not affect heating costs. „The climate protection effect of a combination of photovoltaic system and heat pump is higher than with a CHP unit,“ knows Florian Henle, CEO of Polarstern. „It is also an economically attractive solution, especially in energy-efficient new buildings and renovations.“
Using storage concepts
In addition, heat pumps and their integration into energy and storage systems have been technologically developed further and further in recent years. „There are more and more possible applications and technical advancements such as the ice storage concept, which increases the efficiency of reversible heat pumps,“ explains Norbert Neuhaus, Sales Manager at climate solutions manufacturer Viessmann. „It also enables large buildings in urban areas to tap into a reliable heat source.“
Consumption of on-site solar power is increasing
In addition, photovoltaic systems and heat pumps are a good match in terms of electricity generation and consumption. This is because the heat pump can use the solar electricity even when the building’s residents are not at home and temporarily store the generated heat. This increases the proportion of solar electricity used on site. In addition, the heat pump can also cool rooms, which makes year-round use possible. This increases its operating hours and shortens the amortisation period of the system technology.
Combining heating and cooling
In apartment buildings, several heat pumps are usually installed to supply the complete building. This is also an advantage. Because the devices can be networked with each other to support the efficient energy supply with as much solar power as possible. For example, it is possible to switch some heat pumps to cooling in summer while the remaining devices continue to supply hot water. The prerequisite for this is that the heat pumps used for cooling can operate reversibly. (su)
Jetzt anmelden zum heutigen Webinar: Vollelektrische Gebäude: Gewerke und Kosten reduzieren
Gemeinsam mit dem österreichischen Anbieter von elektrischen Vollversorgungssystemem für Gebäude my-PV führt die Redaktion von Solar Age ein Webinar zur Planung und Auslegung solarelektischer Haustechnik durch.
Architekten, Planer und Immobilieneigentümer bekommen hier einen detaillierten Einblick in das Thema vollelektrische Gebäude. Es geht dabei nicht nur um die technische Planung und Umsetzung, sondern auch um die Wirtschaftlichkeit solcher Energiesysteme.
Dabei bekommen die Teilnehmer am Webinar antworten auf die wichtigsten Fragen, die aufkommen, wenn es darum geht, erneuerbare Energien bestmöglich in aktuelle Bau- und Wohnprojekte zu integrieren:
– Welche Möglichkeiten gibt es für fassadenintegrierte Photovoltaikanlagen?
– Wie kann die Photovoltaikenergie direkt und sinnvoll im Wohnungsbau ohne aufwändiges Mieterstrommodell angewendet werden?
Zudem werden die Experten des Planungsbüros S&P den aktuellsten Stand der Technik vorstellen und den Teilnehmern einen Blick über den Tellerrand hinaus gewähren, was bei gut gedämmten Häusern und Wohnbauprojekten schon möglich ist.
Sven Ullrich von Solar Age, einer B2B-Plattform zur Unterstützung von Architekten und Bauträgern, richtet im Webinar den Blick auf bereits bestehende Lösungen, fassadenintegrierte Photovoltaikanlagen bestmöglich zu nutzen und deren Energie direkt im Haus zu verbrauchen.
Zum Abschluss des Webinars präsentieren die Spezialisten Referenzen, die zeigen, dass sich die Gewerke und Kosten in der Bau- sowie auch in der Betriebsphase senken lassen und gleichzeitig sich der Komfort für den Kunden erhöht.
Profitieren Sie von den Erfahrungen und vom Fachwissen unserer Experten: Mario Mendes, geschäftsführender Gesellschafter bei S&P, einem Planungsbüro, das Haustechnik, Elektrotechnik, Bauphysik und Gebäudezertifizierungen aus einer Hand für Architekten, Baugruppen und Bauträger bietet
Sven Ullrich, Chefredakteur bei Solar Age, einer B2B-Plattform, die Architekten und Bauträger in ihrer beruflichen und unternehmerischen Tätigkeit unterstützt
Reinhard Hofstätter, Trainer bei my-PV, einem auf die Erhöhung des Eigenverbrauchs von Photovoltaikanlagen spezialisierten Unternehmens aus Oberösterreich
Wann? 25. Februar 2021, 16-17 Uhr
Kosten? kostenfrei
Webinar Vollelektrische Gebäude: Gewerke und Kosten reduzieren – mit Zusatztermin
Gemeinsam mit dem österreichischen Anbieter von elektrischen Vollversorgungssystemem für Gebäude my-PV führt die Redaktion von Solar Age ein Webinar zur Planung und Auslegung solarelektischer Haustechnik durch. Aufgrund der großen Nachfrage gibt es jetzt zwei Termine.
Architekten, Planer und Immobilieneigentümer bekommen hier einen detaillierten Einblick in das Thema vollelektrische Gebäude. Es geht dabei nicht nur um die technische Planung und Umsetzung, sondern auch um die Wirtschaftlichkeit solcher Energiesysteme. Aufgrund der großen Nachfrage haben die Veranstalter ein zusätzliches Webinar zum gleichen Thema aber zu einem zusätzlichen Termin organisiert. Zur Auswahl stehen jetzt der 25. Februar oder der 10. März 2021.
Profitieren Sie vom Fachwissen der Referenten: Im Video erklärt Markus Gundendorfer von My-PV, welche Kennnisste im Webinar vermittelt werden.
Dabei bekommen die Teilnehmer am Webinar antworten auf die wichtigsten Fragen, die aufkommen, wenn es darum geht, erneuerbare Energien bestmöglich in aktuelle Bau- und Wohnprojekte zu integrieren:
– Welche Möglichkeiten gibt es für fassadenintegrierte Photovoltaikanlagen?
– Wie kann die Photovoltaikenergie direkt und sinnvoll im Wohnungsbau ohne aufwändiges Mieterstrommodell angewendet werden?
Zudem werden die Experten des Planungsbüros S&P den aktuellsten Stand der Technik vorstellen und den Teilnehmern einen Blick über den Tellerrand hinaus gewähren, was bei gut gedämmten Häusern und Wohnbauprojekten schon möglich ist.
Sven Ullrich von Solar Age, einer B2B-Plattform zur Unterstützung von Architekten und Bauträgern, richtet im Webinar den Blick auf bereits bestehende Lösungen, fassadenintegrierte Photovoltaikanlagen bestmöglich zu nutzen und deren Energie direkt im Haus zu verbrauchen.
Zum Abschluss des Webinars präsentieren die Spezialisten vom My-PV Referenzen, die zeigen, dass sich die Gewerke und Kosten in der Bau- sowie auch in der Betriebsphase senken lassen und gleichzeitig sich der Komfort für den Kunden erhöht.
Profitieren Sie von den Erfahrungen und vom Fachwissen unserer Experten: Mario Mendes, geschäftsführender Gesellschafter bei S&P, einem Planungsbüro, das Haustechnik, Elektrotechnik, Bauphysik und Gebäudezertifizierungen aus einer Hand für Architekten, Baugruppen und Bauträger bietet
Sven Ullrich, Chefredakteur bei Solar Age, einer B2B-Plattform, die Architekten und Bauträger in ihrer beruflichen und unternehmerischen Tätigkeit unterstützt
Reinhard Hofstätter, Trainer bei my-PV, einem auf die Erhöhung des Eigenverbrauchs von Photovoltaikanlagen spezialisierten Unternehmens aus Oberösterreich
Wann? 25. Februar oder 10. März 2021, jeweils 16-17 Uhr Kosten? kostenfrei
Solar building envelope covers 40 percent of electricity consumption in office building
Planners from the ZSW have measured and evaluated how the solar building envelope can cover the electricity demand in office buildings. The results are impressive.
A solar façade in combination with a solar roof can take over a large part of the electricity supply of an office building. The researchers at the Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) have evaluated the yield data of their solar building envelope. The result: the electricity from the solar modules of the roof and façade can cover almost 40 percent of the total demand of an office building – and that even without the use of solar power storage systems. To do this, the researchers took the yield data from their own façade and transferred it to a modelled standard office building.
Roof surfaces are not sufficient for tall buildings
Thus, due to its size and orientation, the solar façade alone supplies 29 percent of the electricity consumed in an office building. This is because the module area, if it covers the whole façade, is many times larger than that of the roofs, especially in taller buildings. In the case of tall office buildings, there is also the fact that the roof area is usually insufficient to supply the building to the extent necessary to achieve an energy standard that is essential for modern architecture to make a significant contribution to the fight against global warming.
Façade has seasonal advantage
The façade has a second advantage. It is not optimally oriented towards the hot summer sun, as would be the case with roof systems. Due to the vertical installation of the modules, the façade is better aligned to the lower sun in winter and provides more energy than a roof system when it is needed. In addition, snow does not remain on the vertically oriented modules.
80 percent self-consumption achieved
During the day, the solar façade is also more suitable for buildings where electricity consumption is very high in the daytime compared to the morning or evening hours. As a result, it was possible to consume 80 per cent of the electricity in the standard office building modelled by the ZSW researchers. „This is because office buildings mainly need electricity during the day, so a large part of the solar electricity generated can be consumed immediately throughout the day,“ says Dieter Geyer, project manager at ZSW. „Storing the electricity for later consumption is therefore not absolutely necessary.“ This has a positive effect on the costs of the entire photovoltaic system.
Solar façade and roof system provide 39 per cent
If the yield from the modules on the roof is added, the share of electricity consumption covered by solar power rises to as much as 39 percent. From these data, the researchers conclude that solar façades and their combination with roof systems are a recommendable option for making the electricity supply of office and administrative buildings more climate-friendly. Architects and building planners will therefore increasingly use façade photovoltaic systems in the future, they predict. For module manufacturers, this opens up an opportunity to develop a mass market.
The building is completely equipped with customised modules. The yield data are permanently documented. The researchers modelled a five-storey office building with the same orientation as the real ZSW building. A quarter of the façade of this model consists of solar modules. In addition, a second solar system occupies 30 percent of the roof area. This results in an installed capacity of 131 kilowatts. Based on the real yield data of the ZSW building, this yields 115,000 kilowatt hours of solar electricity per year.
The average consumption of an office building is 170,000 kilowatt hours. The researchers used the real measured consumption data of administrative buildings in Baden-Württemberg as a basis here. (su)
Study from Switzerland: Solar façades and solar roofs are profitable
The additional costs for a solar building envelope compared to conventional construction methods amount to 30 to 50 percent of the costs for the façade and roof. However, the electricity yield leads to a higher return on investment.
The roof and façade integration of a solar system rises the construction costs of the building envelope. But the additional costs are manageable and range between 30 and 50 percent of the total costs for a façade or the roof, depending on the application. This is the result of a study conducted by the Swiss Planning Office for Solar Façades CR Energie on behalf of the Swiss Federal Office of Energy (BFE) and Energy Switzerland.
Only add additional costs for photovoltaics
For this purpose, five reference buildings were examined to determine the additional costs of integrating photovoltaics compared to a conventional building envelope. The total investment costs were considered. Thus, not only the costs for the mounting and the façade material itself, which are incurred anyway, were included, but also a possibly higher price for the solar modules compared to the passive façade material as well as the additional costs caused by the photovoltaics. These range from the cabling and power electronics to the connection of the systems to the grid and the building electronics. „Design aspects, on the other hand, do not lead to additional investment that can be attributed to photovoltaics,“ explains Christian Renken, Managing Director of CR Energie, when presenting the results at this year’s Symposium Solar Construction, which was organized by Swissolar and the Austrian Technology Platform Photovoltaics (TPPV). „These cannot therefore be attributed to the photovoltaics“.
Solar roof costs 41 percent more
When i analyzed the integration of monocrystalline modules into the roof of an apartment building, it was found that the total cost of BIPV is 990 Swiss francs per square meter. An alternative covering with fiber cement slate would have cost 586 Swiss francs per square meter. Thus the additional costs for BIPV are 41 percent. At 45 percent, the additional costs for a façade built with monocrystalline glass-glass in comparison to a conventional glass façade are similarly high.
How much more costs a custom-made solar façade in a new building?
Even if customized colored solar modules are used in the façade, the additional costs for photovoltaics remain well below 50 percent compared to a fiber cement slate façade. In the new building examined here, the additional costs for the custom-made modules were even lower at 42 percent than for a façade with standard modules.
The economic efficiency can be improved
At first this sounds a lot. But CR Energie has evaluated the economic efficiency. This is not only made up of the investment costs, but must also include the yield from the solar façade. This economic efficiency depends, among other things, on the consumption of solar power on site. The higher this is, the more the operating costs for the building decrease.
Return on investment increases
In many cases, this increases the return on investment above that of a conventional building envelope. After all, the inactive shell only generates such a return through the depreciation of the building component, whereas the solar system adds the electricity yield. The return on investment is between one and four percent if the system is integrated as part of a building renovation. If the solar system is integrated into a new building, the return on equity is between two and eight percent. The inactive façade generates a return on investment of around five percent. In the case of roof renovation, it is less than one percent and even becomes negative without tax deductions.
Use high quality systems
However, the profitability depends on other factors. „Integral planning is crucial in this context,“ explains Christian Renken. „Thus, the solar façade must be taken into account in the planning right from the start“. But low maintenance costs for the integrated solar system are also decisive. „That is why it is important to use durable systems,“ emphasizes Christian Renken. In this way, the additional costs for the active building envelope can be limited to 30 to 50 percent, but these are amortized within a few years through the electricity yield. (su)
Planungshilfe für Kombination aus Photovoltaik und Gründach erschienen
Der Bundesverband Gründach hat eine Fachinformation zur Kombination von Photovoltaik mit Gründächern veröffentlicht. Hier finden Architekten, Stadt- und Fachplaner sowie Bauherren Grundlagen und Planungsempfehlungen.
Der Bundesverband Gebäudegrün (BuGG) hat zwei Arbeitshilfen für die Planung und Errichtung von Photovoltaikanlagen auf Gründächern veröffentlicht. Damit will der Verband die Kombination dieser beiden Technologien unterstützen und weiter vorantreiben. Denn damit lassen sich die Dachflächen gleich doppelt nutzen. Einerseits bleibt die Möglichkeit erhalten, mit dem Gründach einen erheblichen Beitrag zum Stadtklima und zur Artenvielfalt in der Stadt zu leisten. Andererseits ist gleichzeitig die Erzeugung von sauberem Solarstrom möglich.
Planungshinweise für die Kombination
In der BuGG-Fachinformation „Solar-Gründach“ haben die Autoren die wichtigsten Grundlagen für die Kombination von Solaranlagen mit Extensivbegrünung beschreiben. Hier werden unter anderem Begriffe erklärt. Sie geben zudem Handlungshinweise bei der Planung und Installation der Solaranlagen auf Gründächern. Neben den Planungsgrundlagen beschreiben sie dies anhand von praktischen Beispielen und verschiedenen Anwendungsfällen wie beispielsweise die Ausrichtung der Solaranlage nach Osten und Westen. Die Beschreibungen erfolgen grundsätzlich produktneutral.
Liste von geeigneten Pflanzen integriert
Die Fachinformation umfasst zudem eine Liste von Pflanzen, die sich mit der Photovoltaik kombinieren lassen. Denn nicht jede Pflanze ist geeignet. So muss sie auch im Schatten der Module gut wachsen, darf aber nicht so hoch werden, dass sie die Module verschattet. (su)
Watt d’Or: Solar façade with white modules wins award
Two new apartment buildings in a small village on Lake Zurich have convinced the Watt d'Or jury. With this award, the Swiss Federal Office of Energy honours outstanding projects that represent the architecture of the future.
The new apartment buildings in Männedorf, Switzerland, impress the observer with their spectacular architecture. Because they stand out from the architecture of the neighbourhood. But the real innovation is in the detail, well hidden from view. The buildings are completely clad in solar modules. Most of the opaque façade areas are covered with modules, which in turn are covered with reddish-brown solar glass.
White modules provide relief
To lighten the visual weight of the façade, architect René Schmidt, who has also designed a self-sufficient, solar-powered apartment building in Brütten, used white solar modules. This lightening is only possible because of a special technology designed by engineers at the CSEM in Neuchâtel and further developed to market maturity by Solaxess. The company, based in Marin-Epagnier, produces the nanotechnological film from various components. A polymer resin ensures the stability of the film.
Costs reduced
The film is placed between the solar cells and the front glass and thus laminated into the module. The foil ensures that only that part of the visible light is reflected by the surface of the module which is decisive for the colouring. The rest of the incident light spectrum can be used by the solar cells underneath to produce electricity. On the one hand, this makes white modules possible that generate electricity and, on the other hand, reduces losses due to the colouring. In the meantime, Solaxess also has other colours in its portfolio. This allows Solaxess to scale the production of the foils, which, together with the further development in the past year, has ensured that the prices of the foil have dropped by two thirds.
Solar technology disappears from awareness
The film can be combined with all solar technologies. René Schmid has opted for monocrystalline solar cells. However, these remain completely invisible to the observer because of the foil. The colouring of the remaining reddish-brown modules also makes the solar cells disappear under the front glass.
Innovative building concept with energy flat rate
But not only the solar building envelope is an innovation. The energy concept is also worth a close look. It is designed in such a way that the tenants even get an annual energy budget free of charge. You can read what this looks like in a detailed project description, which you can find in the Solar Age project database both in German and in English. A dossier on René Schmid’s project in Brütten is also posted there. You can use the dossiers after registering free of charge as a Club Member of Solar Age. (su)
Kromatix produces coloured solar glasses in Switzerland
The company will produce the first front glass for solar modules coated with special nanomaterial in Romont in the canton of Fribourg before the end of February.
The manufacturer of coloured solar glasses Kromatix will set up a production line in Romont in the Swiss canton of Fribourg. Until now, the company had manufactured its special front glasses for coloured solar modules in Dubai. The subsidiary will also stay there, which is responsible for sales and the implementation of projects in the Middle East. Production itself, however, will take place in Switzerland, according to the government of the canton of Fribourg.
Meeting the needs of a growing market
The canton is renting the future production halls to Kromatix. „In Romont, we have found high-quality facilities. Given the region’s glass manufacturing tradition and the potential synergies with other partners nearby, the location in the canton of Fribourg is perfect for developing our activities,“ explains Rafic Hanbali, chairman of the board of directors of Kromatix. „Kromatix operates in a forward-looking sector, is oriented towards sustainable development and uses the sun as a renewable energy source,“ adds Jerry Krattiger, Director of the Economic Development Department of the Canton of Fribourg. „The market is considerable and growing fast.“ The first coloured solar glasses are expected to roll off the production line before the end of February 2021.
Technology is coming home
This brings the technology back to its place of development. For it was created at the ETH in Lausanne and once brought to market maturity in Switzerland by the engineers of Swissinso, the parent company of Kromatix. The move to Romont is in response to the steadily increasing demand for coloured solar modules in Europe, the cantonal government quotes Swissinso as saying.
Special layer provides colour on the module
Kromatix’s technology is based on an effect that enables the production of coloured solar modules without printing technology. This is because a nanometre-thin layer on the surface of the solar glass ensures that only those wavelengths of sunlight are reflected that are necessary for the colouring. All other wavelengths are transmitted to the solar cells underneath and can be used for electricity production. In this way, solar glasses can be coloured on demand without affecting the efficiency of the solar cells too much. This makes it a solution for the design of solar façades. (su)
Planning guide for combining photovoltaics and green roofs published
The German Green Roof Association has published a technical information sheet on combining photovoltaics with green roofs. Here, architects, urban and technical planners as well as building owners can find basic principles and planning instructions.
The German Green Building Association (BuGG) has published two practical manuals for the planning and installation of photovoltaic systems on green roofs. With these, the association wants to support and further promote the combination of these two technologies. This is because the roof areas can be used twice. On the one hand, the green roof maintains the possibility of making a significant contribution to the urban climate and biodiversity in the city. On the other hand, the generation of clean solar electricity is possible at the same time.
Planning tips for the combination
In the BuGG technical information „Solar Green Roof“, the authors have described the most important principles for combining solar systems with extensive green roofs. Among other things, terminology is explained. They also give instructions for planning and installing solar systems on green roofs. In addition to the planning basics, they describe this using practical examples and various application cases, such as the orientation of the solar system to the east and west. The descriptions are basically product-neutral.
List of suitable plants integrated
The technical information also includes a list of plants that can be combined with photovoltaics. This is because not every plant is suitable. For example, it must grow well in the shade of the modules, but must not grow so tall that it shadows the modules. (su)
The Planning Guide is only available in German language.
Research project develops solution for storage sharing in apartment buildings
A consortium of different project partners want to develop a solution that will allow residents in apartment buildings to use shared storage. Read about the challenges they will have to overcome.
The use of solar electricity temporarily stored in batteries has so far been the domain of the single-family house sector. This is because the requirements for the collective use of electricity storage by the residents of apartment buildings are high. In order to stimulate demand also in this sector, the Melani project aims to find a corresponding technical and economically feasible solution with which each apartment unit in the multi-family building can access the storage and the corresponding amounts of electricity can be billed. „Low-cost electricity generation in the building pays off for everyone – for the residents, the property owner and for climate protection,“ explains Tim Meyer, CEO of the green energy provider Naturstrom. „This benefit can be significantly increased by an electricity storage system combined with an energy management system, which all residential parties can access.“
Extensive field testing of the solution
In addition to Naturstrom, the power electronics manufacturer SMA, the German Federal Institute of Physical Engineering and the Elenia Institute for High Voltage Technology and Energy Storage Systems at the Technical University of Braunschweig are also involved in the project. The project partners are also receiving support from the housing industry in the form of the associations GdW and VDIV as well as the Berlin housing company Gewobag. In a little more than a year, those involved in the project want to develop a technical solution. After that, it will be implemented and tested in a field test. For this purpose, the project partners are already looking for a suitable property.
Collecting usage data
Above all, the billing of electricity quantities when several residential parties access a shared electricity storage system is a challenge. This is because it must always be determined and accounted for exactly which quantities of electricity were consumed by which residential party from the domestic electricity generation plant, the storage unit or from the public grid. This data must be collected in compliance with calibration law.
Developing suitable metering technology
In addition, the local electricity grid operators need this data just as much as the electricity providers who supply the electricity generated on site, the stored electricity and residual electricity quantities from the public grid to the residential parties in the apartment building. Other electricity providers must also receive some of the data. This is because not all residents of an apartment building have to participate in the project. The requirement of free choice of electricity provider must be kept. „The core of the Melani project is to develop the necessary measuring technology, to design it to comply with calibration law and to account for the measured values in a legally secure way,“ says Hauke Witte, describing the central task. He is responsible for project management at Naturstrom. Of course, there is also the security of the data, which must be guaranteed.
Developing business models
But the technical side is not the only challenge. The solution must also be economically feasible so that a business model can emerge from the approach for the investors in the solar plants and the storage units or a participating energy industry service provider. „With Melani, we are opening up multi-storey residential housing for storage use,“ Tim Meyer from Naturstrom is certain. „This will be accompanied by an enormous modernisation push for energy-efficient building technology,“ he predicts. „With the optimisation of local green electricity generation, its storage, its use by the tenants or the creation of charging options for electric vehicles, the digitalisation of the energy transition is making its way into multi-party buildings. We are creating the basis so that a large part of the population can be part of a digitalised energy transition in the future.“
Reducing the impact on the electricity grid
Accordingly, the project partners also have the positive effect on the electricity grid in mind. Especially in dense urban areas, such grid-serving and decentralised systems are necessary to reduce the need to expand the distribution grids. After all, the switch to electromobility and electric heating will put more strain on these grids. A grid-serving storage system can provide compensation for this. The advantage in apartment buildings is that the storage units are usually large and powerful enough to provide better grid stability than a small home storage unit in a single-family house. (su)
Solar hipped roof guarantees high energy standard and attractive appearance
A brand-new building complex in Amsterdam was equipped with a solar-active hipped roof. This not only meets the strict Dutch efficiency standards, but also the aesthetic requirements of the architect.
The Houthaven in Amsterdam used to be the docking point for cargo ships to unload their timber freight. That was more than 100 years ago. Now, a new green quarter is being built here on an area of 5,000 square metres in the Dutch metropolis. It comprises about 2,500 houses – some with jetties as access to the water – and 70 houseboats.
The requirements for the buildings are high. They all have to meet the strict BENG requirements. Since the beginning of 2020, all new buildings in the Netherlands must be constructed as near-zero energy buildings. Strict specifications apply for the maximum energy demand, the maximum consumption of fossil-generated primary energy and a minimum share of renewable energy.
Rooftop construction with an in-roof look
On the other hand, the buildings should also be architecturally attractive. The architects of the Water Section building complex with 58 residential units in the new Houthaven in Amsterdam, in cooperation with the engineers of the Sonnenstromfabrik in Wismar, have shown how such a concept can be implemented in reality. The attractive clinker brick building has a hipped roof that is completely covered with photovoltaic modules. For this purpose, the roofers from Onanjedak – one of the largest Dutch roofing companies – used an on-roof construction and thus achieved an in-roof look.
Precisely fitted roof system
But that was not the only challenge. For the hipped roof construction with its many sloping roof edges also had to be covered in such a way as to create a uniform roof appearance. To achieve this, the employees of the Sonnenstromfabrik made full use of the flexibility of the production plant. They produced many so-called dummy modules in a small series. These have the same appearance as the actual modules, but they lack solar cells. This means that they do not generate electricity. But since the same materials are used in the production as for the solar active panels, their appearance does not differ from the actual solar modules. The Wismar-based company has cut a total of 185 of these dummy modules at an exact angle so that they fit precisely to the sloping edges of the roof and thus represent the connection between the edges and the solar system.
Energy generation meets aesthetics
Despite the lack of solar cells in the dummy modules, the 1,700 solar active modules of the solar roof achieve over 550 kilowatts. This means that the building complex meets the specifications of BENG and the strict aesthetic requirements of the architect. „With this full-surface photovoltaic system for a hipped roof, we were able to demonstrate once again that active energy generation with photovoltaic roof systems does not have to contradict the highest aesthetics in terms of the building envelope,“ sums up Bernhard Weilharter, CEO of the Wismar-based Sonnenstromfabrik.
Battery storage ensures plenty of self-consumption
Each residential unit can thus use 9.5 kilowatts of solar power. In balance, this is enough to cover the entire electricity consumption in the building. However, this in turn depends on the load profile of the residents and the generation profile of the solar system, which do not match perfectly. To increase the share of self-consumption, a battery storage system was installed in the building complex. This can temporarily store 13 kilowatt hours of the solar electricity that is not immediately consumed. The batteries are connected via a hybrid inverter that both converts the direct current from the roof into alternating current and can feed the battery with solar power. It also ensures that the temporarily stored solar energy flows back into the building grid as alternating current when needed. (su)
Potential in Germany: 12,000 square kilometres free for solar façades
The possibilities for integrating photovoltaics into the building envelope are enormous. At least there are plenty of areas available for this in Germany, as researchers in the Standard-BIPV project have calculated.
The potential area for solar façades in Germany is 12,000 square kilometres. This is twice as large as that for roof systems. This area potential is about 6,000 square metres. This means that the area potential for solar façades in Germany corresponds to about half the area of the German state of Mecklenburg-Vorpommern. This is the result of a respective analysis by the Leibnitz Institute of Ecological Spatial Planning (IÖR), which was carried out in cooperation with the Fraunhofer Institute for Solar Energy Systems (ISE), the Institute for Applied Building Research Weimar (IAB), the Chair of Geoinformatics at the Technical University of Munich as well as with practice partners from the solar industry.
Façades are necessary for the climate goals
To examine the potential, the partners in the Standard-BIPV project used geodata to investigate not only the roof surfaces but also the façade surfaces for building integration of photovoltaics. „This is because it will not be enough to install solar systems on all suitable roofs in Germany to achieve the German government’s goal of climate neutrality in existing buildings by 2050,“ says Martin Behnisch from IÖR, explaining the importance of this potential. „However, we must also emphasise that at the moment we are still talking about theoretical potential areas,“ he qualifies. It has not yet been investigated whether these areas can also be technically equipped with photovoltaics and whether this would pay off in terms of economic efficiency.
Geodata are the basis
The area potential was calculated on the basis of official nationwide geodata. To do this, the researchers analysed a three-dimensional model of a building used by the Federal Agency for Cartography and Geodesy. This contains information on the entire building stock in Germany. To simplify matters, the researchers recorded each house as a block with a flat roof.
Building details neglected
This means that detailed roof shapes and the resulting gable walls, windows, doors, projections such as balconies and other installations are not included in the building model. Similarly, the researchers could not take into account aspects of listed building protection or high-quality façade design. Only building façades that touch each other and are thus clearly not unavailable for photovoltaic use were calculated out of the potential. However, in order to reflect reality somewhat more accurately, they examined the building structure in Munich, Freiburg and Dresden in more detail as a reference. Likewise, the details of a random sample of 100,000 buildings distributed throughout Germany were included in the calculation.
Shading taken into account
On the basis of these façades and roofs, the solar irradiation was modelled and visualised for all surfaces. This enables the research team to determine the possible yield of a solar system in great detail. To do this, the researchers not only used detailed building models with their individual roof shapes. The surroundings of the buildings, such as trees and their shadows or the shadows cast by other buildings, as well as the terrain and surrounding mountains were also included in the calculations.
Solar façades generate electricity where it is used
This data has been used to create a visualisation of the area potential and the possible solar energy yields. This also shows the spatial distribution of the potential. This is of course higher where many people live than in rural regions because the potential of BIPV depends on the number of buildings. The advantage: the solar façades are created where the electricity is used. „Every photovoltaic module we install on a house façade helps to conserve nature and precious soil, because it makes the construction of land-intensive solar parks unnecessary,“ Behnisch emphasises.
Solar façades are worthwhile for large buildings
A more important finding, however, is that the modelling of potential yields from the solar-active building envelope shows that photovoltaic façades are particularly worthwhile for large buildings such as production halls, office buildings, educational buildings or public buildings. „But large residential complexes such as high-rise buildings also definitely offer great potential for the installation of photovoltaics,“ says Martin Behnisch.
First look at the potential
The data are a first step towards better planning of energy generation on buildings. „They still need to be specified at the concrete locations through more precise analyses,“ Behnisch explains the next step. „But they do give an impression of the great potential that lies dormant in building-integrated photovoltaics. Especially in view of the CO2 reduction targets, these are important starting points.“ (su)
Last year, about 120,000 new heat pumps were installed in Germany - a quarter of them in existing buildings. The energy transition in the boiler room is picking up speed.
Last year, 120,000 new heat pumps were installed in Germany. This corresponds to a growth of 40 percent compared to the previous year, when about 86,000 heat pumps for heating were installed, as reported by the German Heat Pump Association (BWP). „On the one hand, this development makes it clear that the state subsidy measures for environmentally friendly heating systems are being well received – a nice success also for the German government’s climate programme,“ explains Paul Waning, Chairman of the BWP. On the other hand, the leap in growth also shows that the heat pump industry is up to the climate challenges of the coming years.
Air-to-water heat pumps lead the field
As in previous years, the air-to-water heat pump still enjoys the greatest popularity. As many as 95,500 units were newly installed in 2020. This is an increase of 44 percent compared to 2019. In this segment, monobloc units continue to lead the way with 56,500 new installations. This is 61 percent more than in 2019. The suppliers of split units were able to record an increase of 26 percent. Installers placed 39,000 of these units last year.
Sales of ground-coupled systems also increased last year, after declining in 2019. However, their share of the heat pump market remains far behind that of air-to-water units at 20.6 per cent. In 2020, 20,500 ground-coupled heat pumps were installed, representing market growth of 18 per cent. In addition, there are 4,000 groundwater heat pumps.
Heat pumps are catching on in existing buildings
However, the association sees as a positive trend above all the fact that heat pumps are also becoming more and more popular in existing buildings.Based on the figures of the subsidy applications received by the Federal Office of Economics and Export Control (BAFA), the BWP concludes that a quarter of the new heat pumps installed in 2020 were mounted in exchange for an old oil heating system. That is still about 30,000 systems.
One million units installed
This means that more than one million heat pumps have now been installed in Germany. But the increase must be faster if Germany wants to achieve its climate protection goals in the building sector. According to studies by the Federation of German Industries (BDI) and Agora Energiewende, another one million units must be installed this year and next. Therefore, it is crucial that the course for a consistent implementation of the heat energy transition is set quickly, especially against the backdrop of the upcoming federal elections.
Excessively high electricity prices put the brakes on
The BWP points to the electricity prices, which are still far too high for heat pump operators. „The new federal government must continue to push ahead with the fundamental restructuring of levies and charges on energy sources,“ Waning therefore demands. „There is an urgent need for an alternative financing model for the EEG levy, which is currently borne solely by the end customer. In particular, electricity used to generate climate-friendly heat with heat pumps should be promptly exempted from levies and charges for the consumer.“ The price for CO2 emissions introduced this year is far from sufficient for a fair distribution of levies on energy sources.
Training of skilled workers is necessary
In addition, craftsmen must be trained. After all, only professional installation is a precondition for a long-term switch from fossil heating systems to heat pumps powered by green electricity – either from the photovoltaic system on the roof or from the grid. „In order to be able to guarantee quality in the installation of heat pumps, even in the face of increasing demand, a sufficient number of skilled workers in the HVAC and well construction sector is needed so that the heat energy transition is not slowed down,“ warns Martin Sabel, Managing Director of BWP. „There is a large potential of skilled trades that have not yet dealt with heat pumps or have not done so intensively, but can acquire the necessary expertise with limited effort.“ Together with the VDI, BWP has therefore been organising a training programme on the expert planning and installation of heat pump systems since 2018. The target groups are HVAC contractors, planners and consultants. (su)
Suncurtain has developed a slat curtain with organic solar foils. The Slovenian module manufacturer Bisol has semi-transparent modules in different aesthetics in its portfolio. Valentin Software has added thermal planning to its PV Sol planning tool.
Solar active slat curtain
Suncurtain has developed a solar active slat curtain. The blades consist of organic solar films produced by Armor Solar Power Films. They convert part of the incident sunlight into electricity. This is fed via the curtain rail to an inverter. From there, it can be fed into the domestic grid and used on site.
Semi-transparent modules in many variants
The Slovenian module manufacturer Bisol specializes, among other things, in the production of modules for building integration. The Lumina series offers architects and builders the possibility to activate the building envelope with semitransparent modules. The special feature: Customers can choose from a variety of different transparencies. These are determined by the number of solar cells that are wired in the module.
Heat planning and flexible consumers integrated
Valentin Software, the developer of planning software for building technology with photovoltaics, has released the latest version of its PV Sol. In addition to the existing options, the planner can now also simulate the complete hot water system. For this purpose, the thermal building model of the sister programme T Sol can be integrated. The latest version contains the most up-to-date weather data and other innovations that simplify the planning of the complete building technology.
Suncurtain hat einen Lamellenvorhang mit organischen Solarfolien entwickelt. Der slowenische Modulhersteller Bisol hat semitransparente Module in unterschiedlicher Ästhetik im Portfolio. Valentin Software hat das Planungstool PV Sol um die Wärmeplanung erweitert.
Solar aktiver Lamellenvorhang
Suncurtain hat einen solaren Lamellenvorhang entwickelt. Die Lamellen bestehen aus organischen Solarfolien, die von Armor Solar Power Films produziert werden. Sie wandeln einen Teil des auftreffenden Sonnenlichts in Strom um. Dieser wird über die Vorhangschiene auf einen Wechselrichter geleitet. Von dort kann er ins Hausnetz eingespeist und vor Ort genutzt werden.
Semitransparente Module in vielen Varianten
Der slowenische Modulhersteller Bisol hat sich unter anderem auf die Produktion von Modulen für die Bauwerkintegration spezialisiert. Die Lumina Serie bietet den Architekten und Bauherren die Möglichkeit, mit semitransparenten Modulen die Gebäudehülle zu aktivieren. Das Besondere: Die Kunden können aus einer Vielzahl von unterschiedlichen Transparenzen auswählen. Diese werden von der Anzahl der Solarzellen bestimmt, die im Modul miteinander verschaltet werden.
Wärmeplanung und flexible Verbraucher integriert
Der Entwickler von Planungssoftware von Gebäudetechnik mit Photovoltaik Valentin hat die neuste Version seines PV Sol veröffentlicht. Neben den bisher schon bestehenden Möglichkeiten kann der Planer jetzt auch das komplette Warmwassersystem simulieren. Dazu kann das thermische Gebäudemodell des Schwesterprogramms T Sol eingebunden werden. Die neuste Version enthält die aktuellsten Wetterdaten und weitere Neuerungen, die die Planung der gesamten Gebäudetechnik vereinfachen.
Weitere Details zu den hier vorgestellten Produkten lesen Club Member von Solar Age unserer Produktdatenbank. Diese können Sie kostenfrei nutzen, nachdem Sie sich als Club Member angemeldet haben.
Berlin Energy Agency combines solar tenant power with green roof and EV-charging
Photovoltaic systems on the green roof, charging points in the underground garages and consumption of the solar power on site: the Berlin Energy Agency combines the single pieces of the energy transition in cities.
The Berlin Energy Agency (BEA) has implemented a new approach to the building of the future together with the Charlottenburger Baugenossenschaft (Charlotte building cooperative). The five new buildings in Berlin’s district of Spandau were each equipped with a photovoltaic system located on the green roofs of the houses. In this way, the project partners are combining two approaches to sustainability. „Photovoltaics combined with a green roof is an ideal combination in cities to generate more clean electricity decentrally and at the same time create more vegetated areas for a better urban climate,“ explains Michael Geißler, CEO of BEA. The greenery on the roofs has not yet grown. But by spring, the plants will contribute to a better urban climate. In this way, the green roofs serve as a natural air conditioning and thermal insulation for the building.
Tenant power projects established
They thus contribute to the high energy standard of the buildings.The energy standard is KfW-55, which means that the energy consumption is only 55 per cent of the specifications prescribed by the Building Energy Act for energy-efficient buildings.
Four of the solar systems each have an power output of 17.92 kilowatts. The fifth system even has an power output of 26.88 kilowatts. With the projected annual yield of all the systems of 89.5 megawatt hours, the generators can cover part of the electricity supply. This is because the residents of the building consume the solar energy directly on site as part of a tenant electricity project. This means that BEA supplies the solar power directly from the roof to the flats on the one hand and also delivers the residual power that cannot be covered by the generators on site.
Charging points installed in the parking garage
To ensure that as much solar power as possible can be consumed on site, BEA has also installed eight charging stations in the basement garages. At each charging station, residents will in future be able to fill up their electric cars with a charging capacity of 22 kilowatts using solar power from the roof. If this is not sufficient, they will fill their batteries with green electricity supplied by BEA. „We are seeing increasing interest from our customers in the housing industry for charging points,“ Michael Geißler knows. „This shows that more and more tenants want charging options in apartment buildings as well.“
Inexpensive solar power in the tank
He assumes that the installation of charging points – either as part of a new building or by installing them retroactively in or on an existing building – will continue to gain speed in the coming months. „New subsidy conditions recently launched by the German government will also contribute to this,“ Geißler emphasises. „The combination of photovoltaics and electromobility makes particular sense. Because the photovoltaic electricity from one’s own roof can be used to charge electric cars cheaply,“ he explains. (su)
Fraunhofer ISE: New solution for coloured modules developed
Researchers at the Fraunhofer Institute for Solar Energy Systems (ISE) have developed a new coating process to produce coloured solar modules. The advantage: there is hardly any power loss.
When integrating photovoltaics into the building envelope, architects are primarily concerned with aesthetics. The modules must meet the architects‘ design ideas. The main issue is freedom of shape, size and, above all, colour. The solar industry has adapted to this and developed appropriate solutions. For example, there are now all kinds of possibilities for producing coloured modules, which are also used in the glass industry. However, these usually have the disadvantage that the solar modules lose power due to the colour. This, in turn, meets with reservations on the part of building owners.
Butterfly was the inspiration
To break down this barrier, German scientists at Fraunhofer ISE in Freiburg have developed a process to produce coloured modules with almost no loss of power. The inspiration for this comes from the blue morpho butterfly. This is a butterfly with a bright blue upper wing surface. However, the colour is not created by pigments, but by interference of light on the scales of the wing. That is, they reflect only the wavelength of light that is necessary for the colouring. „The brilliant idea for the development was not to dye the cover glasses of the modules with colour pigments, but rather to imitate the physical effect of the butterfly wing,“ says Thomas Kroyer, head of the Coating Technologies and Systems Group at Fraunhofer ISE.
Less power loss due to colour
This means that the surface structure the researchers have developed also reflects only the wavelength of light that is necessary for the module colour. They can freely adjust the wavelength range and thus the colour. The coating is applied to the underside of the module’s cover glass in a vacuum process and is thus protected from environmental influences. „Around 93 percent of the light can pass through this layer – only around seven percent is reflected and creates the colour effect,“ describes Thomas Kroyer the advantage of the new process.
Modules in shingle design for homogeneous optics
The Freiburg scientists have also developed a method that enables a more aesthetic appearance due to a different module design. For this purpose, the researchers no longer use square solar cells, but semiconductor strips. These are arranged in the module overlapping by a few millimetres like roof shingles. In this way, a homogeneous module optic is achieved in which solar cells no longer shine through as individual pieces. The contact wires are then also no longer visible. „You can look at our shingled photovoltaic modules with Morphocolor coating from different angles – and still the homogeneous appearance lasts,“ Kroyer emphasises.
Fraunhofer ISE presented the technology at this year’s BAU trade fair, which was held online from 13 to 15 January 2021 due to the corona pandemic. Examples of possibilities that architects already have with regard to module design can be found in the Solar Age project database. You can use this free of charge after registering as a Club Member. (su)
200 Dossiers in der Projektdatenbank von Solar Age
Die Projektdatenbank des Architekturportals füllt sich immer mehr. Inzwischen finden die Club Member dort 200 Dossiers zu solaren Gebäuden, die einen großen Teil der Möglichkeiten abbilden, die Gebäudehülle solar zu aktivieren.
Sukzessive füllt sich die Projektdatenbank von Solar Age. Inzwischen finden die Club Member des Architekturportals schon 200 Dossiers über solare Gebäude. Es sind nicht nur die großen und berühmten Leuchtturmprojekte, die Eingang in die Datenbank gefunden haben. Vielmehr versucht die Redaktion, das gesamte Spektrum abzubilden, mit denen Architekten oder Planer im normalen Geschäft konfrontiert werden. Das Spektrum reicht hier vom Einfamilienhaus über das Gewerbe- und Bürogebäude bis hin zu großen Mehrfamilienhäusern im urbanen Raum und speziellen Bauwerken wie Schulen, Carports oder Sportstadien bis hin sogar zu einer klimaneutral arbeitenden Polarstation in der Antarktis.
Architektur, Energiekonzepte und Energiestandards zeigen
Im Mittelpunkt stehen natürlich einerseits die architektonisch ansprechenden Lösungen. Doch andererseits ist der Energiestandard ein wichtiger Fakt, der in der modernen Architektur eine immer größere Rolle spielt. In den Dossiers werden deshalb nicht nur die ästhetischen Aspekten angesprochen. Vielmehr geben sie einen Einblick in die planerische und bauliche Umsetzung sowie in die Ausarbeitung ganzer Energiekonzepte für zukunftsfähige Gebäude.
Alle Möglichkeiten berücksichtigt
In den Dossiers werden zudem alle Solar- und Modultechnologien berücksichtigt, die am Markt erhältlich sind und mit denen die Architekten planen können. Hier reicht das Spektrum vom kristallinen Modul über die verschiedenen Dünnschichttechnologien bis hin zum gesamten Spektrum der kundenspezifischen Lösungen. Denn längst sind die Restriktionen durch die Solarindustrie aufgehoben, was Form, Farbe oder Größe der Module betrifft. Es werden auch alle möglichen Arten der Installation berücksichtigt. So finden die Club Member solare Fassade genauso wie mit Solarmodulen eingedeckte Dächer oder solare Balkonbrüstungen. Aber auch herkömmliche Anlagen beispielsweise auf Flachdächern werden berücksichtigt, wenn sie entweder eine spezielle Bauart aufweisen oder ein zentraler Teil des Energiekonzepts von Gebäuden sind. Die Dossiers decken sowohl Neubauten als auch die energetische Sanierung des Bestands ab. Selbst Lösungen, die die Anforderungen des Denkmalschutzes erfüllen, sind in der Datenbank enthalten.
Weitere Dossiers in Vorbereitung
Der jetzige Datenbestand wird in Zukunft noch erweitert. Es kommen immer neue solare Gebäude hinzu. Denn auch die BIPV entwickelt sich weiter, so dass auch neue Projekte mit neuen Technologien und neuen Lösungen in die Datenbank eingepflegt werden. Alle Dossiers sind in deutscher Sprache vorhanden. Ein großer Teil ist inzwischen auch in englischer Sprach erhältlich. Diese können registrierte Club Member kostenlos nutzen. (su)
The project database of the architecture portal is filling up more and more. In the meantime, club members can find 200 dossiers on solar buildings, which represent a large part of the possibilities for solar activation of the building envelope.
Step by step, the project database of Solar Age is filling up. Meanwhile, the Club Member of the architecture portal already finds 200 dossiers on solar buildings. It is not only the large and famous lighthouse projects that have been included in the database. Rather the editorship tries to represent the entire spectrum, with which architects or planners are face in the daily business. The spectrum ranges from single-family homes, commercial and office buildings to large apartment buildings in urban areas and special structures such as schools, carports or sports stadiums, and even a climate-neutral polar station in Antarctica.
Showcasing architecture, energy concepts and energy standards
Showcasing architecture, energy concepts and energy standards
On the one hand, of course, the focus is on architecturally appealing solutions. But on the other hand, the energy standard is an important fact that plays an increasingly major role in modern architecture. The dossiers therefore not only address the aesthetic aspects. Rather, they provide an insight into the planning and construction implementation as well as the development of complete energy concepts for sustainable buildings.
All possibilities considered
The dossiers also take into account all solar and module technologies that are available on the market and with which architects can plan. Here, the spectrum ranges from crystalline modules to the various thin-film technologies and the entire spectrum of customized solutions. This is because any restrictions imposed by the solar technology on the shape, color or size of the modules have long since been abolished. All possible types of installation are also taken into account. So the club members find solar facade just like roofs covered with solar modules or solar balcony parapets. But also conventional installations, for example on flat roofs, are considered if they either have a special design or are a central part of the energy concept of buildings. The dossiers cover both new buildings and the energy refurbishment of existing buildings. Even solutions that meet the requirements of historic preservation orders are included in the database.
Further dossiers in preparation
The current database will be expanded in the future. New solar buildings are being added all the time. Because BIPV is also developing further, new projects with new technologies and new solutions will also be entered into the database. All dossiers are available in German. A large part is now also provided in English. Registered club members can use them free of charge. (su)
Solaranbieter zeigen Lösungen für BIPV auf der BAU in München
Die Messe BAU in München findet zwar in diesem Jahr online statt. Doch das Informationsangebot zum Thema solare Aktivierung der Gebäudehülle und bauwerkintegrierte Photovoltaik (BIPV) ist reichlich.
Aufgrund der Coronakrise muss auch die Messe BAU in diesem Jahr online stattfinden. Doch das tut dem Informationsangebot kaum Abbruch. Denn viele Anbieter von Lösungen für die solare Aktivierung der Gebäudehülle präsentieren ihre Produkte und Angebote auf der Onlineplattform der Messe.
Solar Dachziegel von Nelskamp im Fachprogramm
So zeigt der Dachziegelhersteller Nelskamp, welche Möglichkeiten es für eine solare Dacheindeckung mit seinen Produkten gibt. Das Unternehmen hat erst im vergangenen Jahr eine Weiterentwicklung seines solaren Dachelements vorgestellt, das nicht nur die Installation vereinfacht, sondern auch die Kosten senkt. In verschiedenen Vorträgen bietet Nelskamp Informationen über die Vorteile der solare Dachziegel gegenüber konventionellen Eindeckungen. Hier erfahren Sie auch, wie solare Dächer mit den Ziegeln von Nelskamp geplant, ausgelegt und installiert werden.
Grenzenlose Designfreiheit mit organischen Solarfolien
Ein ähnlich umfangreiches Informationsangebot hat Armor auf die Beine gestellt. Das französische Unternehmen hat sich unter anderem auf die Produktion von organischen Solarfolien spezialisiert. Diese werden im Werk in Deutschland nach den Vorgaben der Architekten oder Hauseigentümer konfektioniert. In stündlichen Vorträgen erfahren Sie, wie die Gebäudehülle völlig frei von Grenzen hinsichtlich der Form, Farbe oder Größe der Fassadenelemente solar aktiviert werden kann.
Grüne Flachdächer mit Photovoltaik
Auf Flachdächer haben sich Bauder und Zinco spezialisiert. Die Unternehmen aus Stuttgart und Nürtingen zeigen auf der Messe ihre Lösungen unter anderem zur Dachbegrünung – auch in Verbindung mit Photovoltaikanlagen – und zur Eindeckung von Dächern auf energetisch höchstem Niveau. Auch Bauer und Zinco haben ein umfangreiches Informationsangebot zusammengestellt.
Farbige Module ohne Ende
Zusammen mit Solaxess, einem Schweizer Hersteller von Spezialfolien für farbige Solarmodule für Fassaden, präsentiert der Modulhersteller Naps aus Estland seine Angebote für Architekten. Das Unternehmen nutzt unter anderem die Spezialfolien von Solaxess, um farbige Module auch nach Spezifikationen der Architekten zu produzieren. Die Technologie ermöglicht jegliche Farbe. Das Spektrum reich sogar bis hin zu weißen Solarmodulen.
Metalldächer solar aktiviert
Ebenfalls aus Estland sind die Experten von Roofit Solar Energy angereist. Sie stellen ihre Lösung von Metalldacheindeckungen mit integrierter Solartechnologie vor.
Sie finden das komplette Onlineangebot der BAU in München auf der Webseite der Messe. Als registrierter Teilnehmer können sie vom gesamten Informationsangebot der Hersteller profitieren. Die Messe findet vom 13. bis 15. Januar 2021 statt. (su)
Solar providers show solutions for BIPV at BAU in Munich
The BAU trade fair in Munich is taking place online this year. But the information on offer on the subject of solar activation of the building envelope and building-integrated photovoltaics (BIPV) is plentiful.
Due to the corona crisis, the BAU trade fair must take place online this year. But that hardly affects the information on offer. This is because many suppliers of solutions for solar activation of the building envelope are presenting their products and offers on the trade fair’s online platform.
Solar roof tiles from Nelskamp in the trade program
For example, the roof tile manufacturer Nelskamp will be showing what options are available for solar roofing with its products. Just last year, the company presented a further development of its solar roof element, which not only simplifies installation but also reduces costs. In various presentations, Nelskamp will offer information about the advantages of solar roofing tiles over conventional roofing.Here, trade fair visitors will also learn how solar roofs are planned, configured and installed with Nelskamp’s tiles.
Unlimited design freedom with organic solar foils
Armor has prepared a similarly extensive range of information. Among other things, the French company specializes in the production of organic solar foils. These are assembled in the factory in Germany according to the specifications of the architects or homeowners. Hourly presentations will show how the building envelope can be solar-activated completely free of limits regarding the shape, color or size of the façade elements.
Green flat roofs with photovoltaics
Bauder and Zinco specialize in flat roofs. At the trade fair, the companies from Stuttgart and Nürtingen will be showing their solutions for green roofs – also in combination with photovoltaic arrays – and for covering roofs at the highest energy level, among other things. Bauer and Zinco have also assembled a comprehensive range of information.
Colored modules unlimited
Together with Solaxess, a Swiss manufacturer of special films for colored solar modules for façades, the module manufacturer Naps from Estonia will present its offerings for architects. The company uses, among other things, the special films from Solaxess to produce colored modules also according to the specifications of the architects. The technology makes any color possible. The spectrum even extends to white solar modules.
Metal roofs solar activated
Also from Estonia are the experts from Roofit Solar Energy. They will present their solution of metal roofing with integrated solar technology.
You can find the complete online offer of BAU in Munich on the website of the fair. As a registered participant, they can benefit from the full range of information provided by the manufacturers. The trade fair will take place from January 13 to 15, 2021. (su)
Deutscher Mieterbund fordert: CO2-Preis sollen Vermieter bezahlen
Damit der CO2-Preis auf die Nutzung fossiler Brennstoffe in Gebäuden klimapolitische Wirkung entfallten, sollten die Vermieter diese Kosten tragen müssen.
Der Deutsche Mieterbund (DMB) ist sich mit dem Bundesministerium für Umwelt einig: Der zum 1. Januar 2021 eingeführte CO2-Preis für fossile Brennstoffe zum Heizen und für das Warmwasser darf nicht einseitig von den Mietern getragen werden. „Denn aus klimapolitischer Sicht macht die Umlage des CO2-Preises auf die Mieterinnen und Mieter keinen Sinn”, betont Lukas Siebkotten, Präsident des DMB.
Anreize für die Vermieter schaffen
Er begründet dies damit, dass die Mieter überhaupt keinen Einfluss darauf haben, mit welcher Technologie sie heizen und Warmwasser bereiten. Denn das legt der Hauseigentümer und damit der Vermieter fest. Deshalb muss er über den CO2-Preis den Anreiz bekommen, in klimafreundliche Heiztechnologien zu investieren. Diesen bekommt er nicht, wenn die Mieter die Kosten für den CO2-Ausstoß bezahlen müssen. Also müssen die Vermieter diese Klimafolgekosten komplett tragen, weil sie allein über die Art der Beheizung entscheiden. Nur so könne die dringend notwendige Energiewende im Heizungskeller angestoßen werden. Schließlich sei das Ziel der CO2-Bepreisung ist, Klimaschutzinvestitionen im Gebäudebereich anzuregen. „Diese Lenkungswirkung wird im Mietwohnbereich völlig verfehlt, wenn die CO2-Kosten zu 100 Prozent an den Mieter durchgereicht werden”, resümiert der DMB.
Verbrauch reduzieren senkt die Kosten nicht
Dazu kommt noch, dass die Mieter kaum Einfluss auf die Heizkosten haben, indem sie weniger heizen. Denn nur so würde der CO2-Preis eine Lenkungswirkung im Mietwohnungsbestand haben. „Etwaige Einsparungen durch Verbrauchsreduktion auf Mieterseite werden aber durch höhere Energiepreise und die CO2-Kosten aufgefressen. Das ist aus klima- und sozialpolitischer Sicht vollkommen kontraproduktiv”, argumentiert Siebenkotten.
Mieter hat keinen Einfluss
Im Gegenteil: Die Mieter werden durch die CO2-Abgabe doppelt bestraft. Denn einerseits müssen sie Hohe Heizkosten aufbringen, wenn das Gebäude in einem energetisch schlechtem Zustand ist. Durch die CO2-Kosten werden diese Heizkosten weiter in die Höhe getrieben, ohne dass der Mieter etwas dagegen tun kann. Andererseits werden dann die Menschen bestraft, die sich keine neue Wohnung in einem ökologischen Haus mit einer klimafreundlichen Heizungsanlage leisten können. Das wird auch dadurch ausgebremst, dass jede Neuvermietung einer Wohnung diese vor allem in Ballungszentren mit einem knappen Angebot an Mietwohnungen die Mietkosten weiter nach oben treiben.
Soziale Härten nur unzureichend abgefedert
Zwar können mit der von der Bundesregierung beschlossenen pauschalen Erhöhung des Wohngeldes einige soziale Härten abgefedert werden. Dies geht aber nur, wenn die entsprechenden Mieter auch Wohngeld erhalten. Das sind derzeit etwa drei Prozent der Mieter. Zudem setzt das keinerlei Anreize für Vermieter, die Gebäude mit einer ökologischen Heizungsanlage auszustatten. Zwar hat die Bundesregierung im Klimaschutzprogramm zudem eine begrenzte Umlagefähigkeit der CO2-Bepreisung durch die Änderung im Mietrecht angekündigt. Allerdings ist es bisher bei einer Ankündigung geblieben.
Siebenkotten: „Das Limit für die Mieter ist erreicht”
Auf diese Weise werde der CO2-Preis auf fossile Brennstoffe zum Heizen vor allem Haushalte treffen, deren Einkommen knapp über der Grenze liegen, ab der es Wohngeld gibt, und die fossile Energieträger nutzen müssen. „Die Mietkostenbelastung ist für viele Haushalte immens. Infolge der Coronakrise und der damit verbundenen wirtschaftlichen Folgen ist von erheblichen Einkommensverlusten für Mieter auszugehen, wodurch die individuelle Mietbelastung weiter steigen wird. Die Bundesregierung muss endlich handeln Mieterinnen und Mieter vor einer weiteren Kostenbelastung schützen. Das Limit ist für viele längst erreicht beziehungsweise überschritten!“, betont Siebenkotten. (su)
Electric vehicle buyers in Austria will again receive financial support from Vienna this year. For an electric car, there is a subsidy of no less than 5,000 euros.
The Austrian Federal Ministry for Climate Protection, Environment, Energy and Mobility has prolonged funding for electric vehicles and the development of charging infrastructure. The good news for those interested: The investment subsidy for the purchase of an electric car will increase to up to 5,000 euros. Vienna will pay 3,000 euros. The remaining 2,000 euros must be paid by the vehicle importer.
Subsidy also for fuel cell vehicles and electric bicycles
The subsidy is aimed primarily at private individuals. The subsidy is also available for the purchase of a car with fuel cell drive or plug-in hybrids. The subsidy for plug-in hybrids is limited to 3,000 euros. The purchase of electrically powered two-wheelers is also subsidized by up to 1,200 euros. An eligible passenger car must have a fully electric range of at least 50 kilometers. This is particularly relevant for plug-in hybrids. In addition, the car must not cost more than 60,000 euros. The relevant value here is the list price for a base model without optional extras
Subsidies for the electric company fleet
This limit also applies to electric, fuel cell and plug-in hybrid cars for transporting passengers or goods that companies, associations or local authorities purchase. These can also benefit from the subsidy, although in this case the subsidy for purely battery-electric or fuel cell-equipped cars is limited to 2,000 euros. For a plug-in hybrid, there is only 1,000 euros. Diesel-powered cars are still not eligible. An additional bonus of 2,000 euros in each case must be granted by the vehicle dealer when the car is purchased. If he does not do so, Vienna will not pay a subsidy either.
Another important requirement for both companies and private individuals is: The cars must be powered exclusively by electricity from renewable sources.
Support for charging stations
A second element of the e-mobility offensive is support for the construction of charging stations. Vienna is offering a subsidy of 600 euros for the investment in a smart charging cable or a wallbox in a single-family or two-family home. For a smart charging station that supports a free communication standard (Open Charge Point Protocol – OCPP), the subsidy increases to 900 euros. If the latter is installed in an apartment building or in a community complex, there is even a subsidy of 1,800 euros per charging station.
Hamburg hat mit dem neuen Klimaschutzgesetz auch eine Verpflichtung eingeführt, neue Dächer mit einer Photovoltaikanlage auszustatten. Das gilt sowohl im Neubau als auch im Bestand. Ausnahmen müssen nachgewiesen werden.
Hamburg hat mit dem neuen Klimaschutzgesetz eine Solarpflicht eingeführt. So müssen alle Neubauten, die ab 1. Januar 2023 errichtet werden, mit einer Photovoltaikanlage ausgestattet werden. Relevant ist hier der Tag des Baubeginns. Alternativ können die Hauseigentümer auch auf die Solarthermie ausweichen. Das gilt auch, wenn das Dach eines Bestandsgebäudes vollständig saniert wird. Hier ist der Stichtag des Baubeginns der 1. Januar 2025. Der Gesetzgeber unterscheidet hier nicht zwischen Wohn- und Nichtwohngebäuden.
Keine Vorgabe der Größe
Voraussetzung ist, dass das Gebäude eine Bruttodachfläche von mindestens 50 Quadratmetern hat. Die Ausrichtung der Dächer ist dabei unerheblich. Eine konkrete Größe der Anlage gibt der Gesetzgeber nicht vor.
Erfüllung nachweisen
Der Bauherr oder Gebäudeeigentümer muss die Erfüllung der Solarpflicht bei der zuständigen Behörde innerhalb von zwölf Monaten nach Fertigstellung des Baus oder der Sanierung nachweisen. Kann er das nicht, muss er einen Nachweis erbringen, dass die Erfüllung der Solarpflicht technisch oder wirtschaftlich unmöglich ist.
Ausnahmen sind möglich
Denn ein neues Gebäude kann ohne Photovoltaikanlage gebaut werden, wenn dessen Nutzung auf den Dach so viele sonstige Aufbauten notwendig macht, dass keine Module mehr darauf Platz finden. Außerdem muss keine Photovoltaikanlage gebaut werden, wenn diese ein Sicherheitsproblem darstellt oder die Kapazitäten des Verteilnetzes nicht ausreichend sind. Letzteres muss mit einer Netzverträglichkeitsprüfung nachgewiesen werden. Die Hauseigentümer müssen auch keine Solaranlage errichten, wenn das Gebäude nicht Bestandteil des Grundstücks ist und nur ein auf weniger als 20 Jahre befristetes Nutzungsrecht am Grundstück besteht. Das gilt auch für Gebäude, die voraussichtlich kürzer als 20 Jahre genutzt werden. Hier ist der Zweck der Nutzung und die Bauart entscheidend.
Keine Dachstuhlsanierung vorgeschrieben
Die Solarpflicht entfällt bei der Dachsanierung, wenn die Dachfläche nicht eben genug ist, um die Photovoltaikanlage zu installieren oder wenn die Eignungsfläche zu klein ist. Diese Eignungsfläche definiert der Gesetzgeber für Dächer mit einer Neigung von bis zu zehn Grad als alle zusammenhängenden Teilflächen mit einer Größe von mindestens 20 Quadratmetern. Für Dächer mit einer Neigung von mehr als zehn Grad sind dies alle zusammenhängenden Teilflächen mit mindestens zehn Quadratmetern.
Auch auf Dächern, die mit Reet, Stroh oder Holz gedeckt sind, muss keine Solaranlage gebaut werden. Das gilt auch für Dächer, die mit einer transparenten Glaseindeckung versehen sind oder wenn der Dachstuhl die zusätzliche Last der Solaranlage nicht trägt. Hier besteht allerdings die Notwendigkeit, den Dachstuhl zu erneuern oder zu sanieren. Dann können die Hauseigentümer auf die Installation der Anlage verzichten, wenn diese Dachsanierung 70 Prozent der Kosten der eigentlichen Solaranlage übersteigen.
Generator muss wirtschaftlich sein
Auch im Neubau entfällt die Solarpflicht, wenn der Bau einer Photovoltaikanlage wirtschaftlich nicht vertretbar ist. Dazu muss der Bauherr aber nachweisen, dass die Einstrahlungswerte so gering sind, dass sich die Investition innerhalb von 20 Jahren nicht amortisiert. Dabei müssen aber alle geeigneten Dachflächen einbezogen werden. Das gilt auch, wenn alle Dachflächen eines Gebäudes so verschattet sind, dass sie weniger als 70 Prozent der für Hamburg gängigen Sonneneinstrahlung abbekommen. Letztere Regelung gilt allerdings nur für Gebäude mit einer Bruttofläche von weniger als 150 Quadratmetern Bruttogrundfläche.
Dienstleister einbeziehen
Die Gebäudeeigentümer können auch steuerliche Belange geltend machen. Sie müssen keinen Generator bei der Dachsanierung oder beim Neubau eines Hauses errichten, wenn dessen Betrieb mit Blick auf die eigentliche Geschäftstätigkeit erhebliche steuerliche Nachteile bedeuten. Das gilt unter anderem für Wohnungsbaugenossenschaften, die ihre genossenschaftlichen Steuervorteile verlieren können, wenn sie mehr als 20 Prozent ihrer Einnahmen mit dem Betrieb einer Solaranlage erwirtschaften. Das gilt, solange das Bundesfinanzministerium sich quer stellt und diese Regelung nicht ändert. Allerdings legt das Klimaschutzgesetz ausdrücklich fest, dass die Solarpflicht auch dann erfüllt ist, wenn die Installation und der Betrieb des Generators Dritten überlassen wird.
Abweichungen müssen nachgewiesen werden
Sollte ein Hauseigentümer oder ein Bauherr von der Solarpflicht abweichen wollen, muss er allerdings genau nachweisen, dass der Bau einer Photovoltaikanlage technisch oder wirtschaftlich nicht möglich ist. Diesen Nachweis muss ein bauvorlageberechtigter Tragwerksplaner oder ein Solarexperte ausstellen. Für den Nachweis einer eventuellen Unwirtschaftlichkeit muss ein Kostenvoranschlag eines Solarfachbetriebs vorgelegt werden, der konkrete Informationen über die Preise der einzelnen Komponenten und den Gesamtpreis der Anlage enthält. Sollte der Hauseigentümer oder Bauherr nicht selbst in die Solaranlage investieren wollen, muss er das einem Dritten überlassen. Dann entfällt die Solarpflicht nur, wenn kein Dritter bereit ist, die Anlage zu errichten und zu betreiben. Dazu muss er die Ablehnung von mindestens drei in Hamburg ansässigen Anbietern vorweisen.
Erneuerbare Wärme vorgeschrieben
Zudem müssen Eigentümer von Bestandsgebäuden den Wärmeenergiebedarf zu mindestens 15 Prozent mit erneuerbaren Energien abdecken, wenn sie nach dem 30. Juni 2021 ihre Heizung erneuern und das Gebäude vor dem 1. Januar 2009 errichtet wurde. Konkrete Angaben, welche Technologien hier zum Einsatz kommen müssen, macht das Gesetz nicht. Allerdings kann der Hauseigentümer mit einer solarthermischen Anlage seine Pflicht erfüllen. Diese muss bei Ein- und Zweifamilienhäusern eine Aperturfläche von mindestens 0,04 Quadratmeter pro Quadratmeter Nutzfläche betragen. Bei größeren Gebäuden sinkt die minimale Aperturfläche auf 0,03 Quadratmeter pro Quadratmeter Nutzfläche. Die Aperturfläche ergibt sich beim Flachkollektor aus dessen Außenmaßen abzüglich des Rahmens. Beim Röhrenkollektor ist es das Produkt aus der Länge und dem Innendurchmesser der Glasröhre multipliziert mit der Anzahl der Röhren pro Kollektor. (su)
With its new climate protection law, Hamburg has also introduced an obligation to equip new roofs with a photovoltaic system. This applies to both new and existing buildings. Exceptions must be proven.
With its new climate protection law, Hamburg has established a solar obligation. Thus, all new buildings constructed after January 1, 2023, must be equipped with a photovoltaic system. The relevant date here is the day construction begins. Alternatively, property owners can also opt for solar thermal energy. This also applies if the roof of an existing building is completely renovated. Here, the cut-off date for the start of construction is January 1, 2025. The legislator does not differentiate between residential and non-residential buildings.
No size requirement
The prerequisite is that the building has a gross roof area of at least 50 square meters. The orientation of the roofs is irrelevant. The legislator does not specify a concrete size of the plant.
Proof of compliance
The builder or building owner must prove compliance with the solar obligation to the relevant authority within twelve months of completion of the construction or renovation. If he is unable to do so, he must provide proof that it is technically or economically impossible to fulfill the solar obligation.
Exceptions are possible
This is because a new building can be built without a photovoltaic system if the use of the building makes so many other superstructures necessary on the roof that there is no more space for modules on it. In addition, a photovoltaic system does not have to be built if it poses a safety problem or if the capacities of the distribution network are insufficient. The latter must be proven with a grid compatibility test. House owners also do not have to build a solar system if the building is not part of the land and there is only a right to use the land limited to less than 20 years. This also applies to buildings that are expected to be used for less than 20 years. Here, the purpose of the use and the type of construction are decisive.
No roof truss renovation required
The solar obligation does not apply to roof renovation if the roof surface is not plane enough to install the photovoltaic system or if the suitability area is too small. The suitable areas are on roofs with an inclination of up to ten degrees all contiguous partial areas with a size of at least 20 square meters. On roofs with a slope of more than ten degrees, these are all contiguous partial areas of at least ten square meters.
Solar is also not required to be built on roofs covered with thatch, straw or wood. This also applies to roofs that are covered with transparent glass roofing or if the roof structure cannot bear the additional load of the solar system. In these cases, however, there is a need to replace or renovate the roof truss. In that case, homeowners can avoid installing the system if this roof renovation exceeds 70 percent of the cost of the actual solar system.
Generator must be economical
The solar obligation also does not apply to new buildings if the construction of a photovoltaic system is not economically justifiable. To do this, however, the builder must prove that the irradiation values are so low that the investment will not pay for itself within 20 years. However, all suitable roof surfaces must be included. This also applies if all roof surfaces of a building are shaded in such a way that they receive less than 70 percent of the solar irradiation that is common for Hamburg. The latter regulation, however, only applies to buildings with a gross floor area of less than 150 square meters.
Involve service providers
Building owners can also claim tax benefits. They do not have to install a generator when renovating a roof or building a new house if its operation would cause significant tax disadvantages in view of the actual business activity. This applies to housing cooperatives, among others, which can lose their cooperative tax benefits if they generate more than 20 percent of their revenue from operating a solar system. This will be the case as long as the Federal Ministry of Finance gets in the way and does not change this regulation. However, the Climate Protection Act explicitly states that the solar obligation is also met if the installation and operation of the generator is left to third parties.
Deviations must be proven
However, should a property owner or developer wish to deviate from the solar obligation, they must provide precise proof that the construction of a photovoltaic system is not technically or economically feasible. This proof must be provided by a structural engineer authorized to submit building documents or by a solar expert. To prove that the system may not be economically feasible, a cost estimate from a solar expert must be submitted that includes specific information about the prices of the individual components and the total price of the system. If the house owner or builder does not want to invest in the solar system himself, he must leave this to a third party. In that case, the solar obligation is waived just in case no third party is willing to install and operate the system. To do so, he must present the refusal of at least three providers located in Hamburg.
Renewable heat mandatory
In addition, owners of existing buildings must cover at least 15 percent of their heating energy requirements with renewable energies if they renew their heating system after June 30, 2021, and the building was constructed before January 1, 2009. The law does not specify which technologies must be used here. However, homeowners can fulfill their obligation by installing a solar thermal system. For one- and two-family houses, this must have an aperture area of at least 0.04 square meters per square meter of floor space. For larger buildings, the minimum aperture area drops to 0.03 square meters per square meter of usable area. The aperture area of a flat plate collector is calculated from its outer dimensions excluding the frame. For a tube collector, it is the product of the length and the inner diameter of the glass tube multiplied by the number of tubes per collector. (su)
Architects for Future starten Petition für nachhaltiges Bauen und ökologischen Gebäudebetrieb
Bauen mit ökologischen Baustoffen und der Gebäudebetrieb mit erneuerbaren Energien steht im Mittelpunkt einer Petition, die Architects for Future im Bundestag gestartet habe. Bis zum 8. Januar 2021 kann sie noch unterschrieben werden.
Der Verein Architects for Future (AFF) hat im deutschen Bundestag eine Petition gestartet, um das Bauen und den Betrieb von Gebäuden klimaverträglicher zu gestalten als bisher. AFF fordert dazu ein umfangreiches Maßnahmenpaket, das das Parlament auf dem Weg bringen soll.
Preis für ökologische Baustoffe senken
So soll der Marktpreis von Baumaterialien alle Umweltfolgekosten umfassen. Das solle dazu führen, dass alle umweltschädlichen Baustoffe teurer werden. Die höheren Kosten sollen in eine Querfinanzierung von ökologisch nachhaltigen Baustoffe fließen, die dadurch günstiger werden. In die Preisbildung soll die gesamte Umweltbilanz berücksichtigt werden. Das bedeutet, dass neben der CO2-Bilanz bei der Herstellung der Baustoffe auch der Energie- und Wasserverbrauch einfließen muss. Das gilt von der Rohstoffgewinnung über Produktion und Transport bis hin zu Wiederverwertbarkeit und zum Entsorgungsaufwand.
Außerdem sollen Regeln festgelegt werden, um einen kreislaufgerechten Rückbau von Bauprodukten zu gewährleisten. Dabei soll der Qualitäts- und Funktionalitätsverlust – das sogenannte Downcycling – vermieden werden. Im Neubau sollen vermehrt Materialien aus dem Rückbau genutzt werden.
Ressourcenaufwand im Gebäudebetrieb berücksichtigen
Außerdem soll der Ressourcenaufwand und der CO2-Ausstoß eines Gebäudes nicht nur die Konstruktion, sondern auch den Betrieb und sogar den Abriss umfassen. Daten über den energetischen Gesamtaufwand für den Bau eines Gebäudes (graue Energie) müssen umfassend erhoben und transparent dargestellt werden. Das gilt auch für den Ressourcenverbrauch und die Kreislauffähigkeit. Diese müssen wiederum gesetzlich etwa im Gebäudeenergiegesetz festgelegt werden. Dann steigen auch die Anreize, erneuerbare Energien in Gebäuden zu nutzen. Das müsse zudem stärker bei der Förderung, der Kreditvergabe und der Gebäudefinanzierung berücksichtigt werden.
Bestand schützen
Außerdem fordern die AFF die Verringerung von Flächenversiegelung und entsprechende Ausgleichsmaßnahmen. Dazu gehört auch der Schutz von Bestandsgebäuden. Der Abriss soll nur noch genehmigt werden, wenn er sozial und klimanotwendig ist. Sanierungen sollen auch über den Denkmalschutz hinaus stärker gefördert und unterstützt werden. Das solle über eine Muster-Umbauordnung geschehen, die neu eingeführt werden soll. Zudem solle die Quote der energetischen Sanierungen massiv erhöht werden.
Der Neubau wiederum soll nachweislich bedarfsorientiert, flexibel und umnutzbar erfolgen. Damit wollen die AFF dem Wohnungs- und Infrastrukturmangel, dem Leerstand und der Spekulation vorbeugen.
Nachhaltigkeit in die Ausbildung integrieren
Auch die Ausbildung von Architekten und Bauingenieuren soll den zukünftigen Aufgaben der beiden Branchen Rechnung tragen. AFF fordert deshalb eine verpflichtende Einführung von nachhaltigem Bauen in die Lehrpläne von Hochschulen und Ausbildungsstätten. Zudem sollen Weiterbildungen zum Thema nachhaltiges Bauen verpflichtend werden.
Die Petition können Sie bis zum 8. Januar 2021 auf der Petitionsseite des Bundestages unterschreiben. Die AFF brauchen bis dahin 50.000 Unterschriften, damit die Petition im Bundestag behandelt werden muss. (su)
Welche Möglichkeiten es gibt, vor allem den Gebäudebetrieb, der den größten Teil der CO2-Bilanz eines Hauses ausmacht, zu gestalten, finden Sie in den Dossiers in der Projkektdatenbank von Solar Age. Diese können Sie nach Anmeldung als Club Memeber kostenlos nutzen.
Architects for Future launch petition for sustainable construction and ecological building operation
Building with ecological construction materials and the operation of buildings with renewable energies is the focus of a petition that Architects for Future has launched in the German parliament. It can still be signed until January 8, 2021.
The association Architects for Future (AFF) has initiated a petition in the German Bundestag to make the construction and operation of buildings more climate-friendly than before. To this end, AFF is calling for a comprehensive package of measures to be launched by parliament.
Lowering the price of ecological building materials
Thus, the market price of building materials should include all environmental follow-up costs. This should lead to all environmentally harmful building materials becoming more expensive. The higher costs are to be used to cross-finance ecologically sustainable building materials, making them cheaper. The entire environmental balance is to be taken into account in the pricing. This means that in addition to the CO2 balance in the production of the building materials, the energy and water consumption must also be included. This extends from the extraction of raw materials, through production and transport, to recyclability and the cost of disposal.
In addition, rules are to be laid down to ensure that building products are deconstructed in a way that is appropriate to the cycle. The loss of quality and functionality – so-called downcycling – is to be avoided. In new construction, materials from deconstruction are to be used to a greater extent.
Consideration of resource consumption in building operation
In addition, the resource input and CO2 emissions of a building are to include not only construction, but also operation and even demolition. Data on the total energy expenditure for the construction of a building (gray energy) must be comprehensively collected and transparently presented. This also applies to resource consumption and recyclability. These in turn must be defined by law, for example in the Building Energy Act. Then the motivation to use renewable energies in buildings will also increase. This would also have to be taken into account to a greater extent in subsidies, lending and building financing.
Protecting existing buildings
The AFF also calls for a reduction in land sealing and corresponding compensatory measures. This also includes the protection of existing buildings. Demolition should only be approved if it is socially and climatically necessary. Renovations should also be promoted and supported more strongly beyond the protection of historical monuments. This is to be done via a standard conversion regulation, which is to be newly introduced. In addition, the rate of energy-efficient renovations is to be massively increased.
New construction, in turn, is to be demonstrably demand-oriented, flexible and convertible. In this way, the AFF want to prevent housing and infrastructure shortages, vacancies and speculation.
Integrating sustainability into education
The training of architects and construction engineers should also take into account the future tasks of both industries. AFF therefore calls for the mandatory introduction of sustainable construction into the curricula of universities and training centers. In addition, further training courses on the subject of sustainable construction should become mandatory.
You can sign the petition on the Bundestag petition page until January 8, 2021. AFF needs 50,000 signatures by then for the petition to be considered by the Bundestag. (su)
To find out what options are available, especially for building operations, which account for most of a home’s carbon footprint, see the dossiers in Solar Age’s project database. You can use this free of charge after registering as a Club Memeber.
The BIPV industry is experiencing double- to triple-digit annual growth in demand for photovoltaic building integration products and solutions. The driving force is building owners.
Building-integrated photovoltaics has grown strongly in recent years. The suppliers of solutions and components also expect a further sharp rise in demand in the coming years. This is the result of a survey among the relevant European suppliers, summarized in the current BIPV status report.
Researchers from the Department of Building Systems and Built Environment at the University of Applied Sciences of the Italian-speaking part of Switzerland (Scuola universitaria professionale della Svizzera italiana – SUPSI) and the Becquerel Institute asked 56 manufacturers and suppliers along the whole value chain about their sales and market prospects. Of these, 13 participated in the survey. The results are promising – at least for the BIPV industry, which is accustomed to a difficult market environment.
In 2020, each supplier will install an average of 7.7 megawatts
As a result, average installation numbers – per responding company – rise from 6.5 megawatts in 2018 to 6.8 megawatts a year later. For 2020, the responding companies expect an average of 7.7 megawatts of new installations. For 2021, they expect an average of 10.1 megawatts, and the market is projected by the companies to increase to 21.9 megawatts by 2023. The companies surveyed base their market forecasts almost exclusively on their home markets. Since mainly manufacturers and suppliers from different European countries participated in the survey, these figures primarily reflect the market outlook in Europe.
Successful outliers
However, there are huge differences within the industry. There are some outliers in the industry that are very successful, while the majority of suppliers have rather lower installation figures to show. This is reflected in the median of the responses, i.e. the weighted average of sales and market forecasts based on actual values. This shows that in 2018, many companies remained below 500 kilowatts of newly installed BIPV capacity, while some providers were well above that. In 2019, the median was one megawatt. For 2020, providers expect the median to rise to 1.5 megawatts of sales per company. For 2021, they expect lower growth to 1.7 megawatts per provider. After that, it speeds up. For 2022, the companies forecast median sales of two megawatts and for 2023, three megawatts.
Double-digit growth
Nevertheless, all signals point to double-digit growth rates – albeit starting from a low level. In 2019, demand actually increased by 145 percent. Among the reasons for the positive forecast, the authors see the lower prices for photovoltaics, which are also reflected in the cost of BIPV, and the increasingly comprehensive technical and aesthetic solutions. Thus, photovoltaics now offers everything architects need. Whether in terms of color, shape or size of the modules, they can plan just as freely as they are used to with conventional glass elements or other facade elements.
Colored modules are in demand
Technologically, the focus remains on crystalline cell technology, which is integrated into building envelopes. Here, the technology is following the general trend in the photovoltaic market. Thus, the highly efficient monocrystalline PERC cells are integrated in most modules. Thin-film or organic photovoltaics are still less in demand here. „Another interesting trend is that all responding manufacturers of solar glass indicate that they offer colouring possibilities, which confirms that such customization feature is more and more widespread on the market,“ the authors of the status report write.
Building owners drive the market
Most suppliers see builders and building owners as the primary drivers of demand. But architects are also being mentioned more and more often when it comes to who is asking suppliers for appropriate solutions. In addition, installers, dealers, property developers and specialist planners are increasingly asking suppliers about BIPV solutions and products.
The German Agency for Renewable Energies has updated its Heat Compass. It helps homeowners to find the right heating technology for their building.
The Berlin-based Agency for Renewable Energies (AEE) provides homeowners with an updated heat compass. The AEE thus offers owners of single- or multi-family houses an orientation for the modernisation of the existing heat supply to renewable energies if possible. Because with the Heat Compass, home owners can compare the various heating technologies – both the various eco-heating systems among themselves and with the fossil fuel systems that use oil and gas. What is still missing is the approach of a all-electric building in which a photovoltaic system supplies the energy for the operation of heating rods.
Information about costs
Nevertheless, homeowners are provided with information on CO2 emissions on the one hand and on the annual costs caused by the most common technologies on the other. Users can select the one solution tailored to their building, both for old and new buildings, both for single-family homes and apartment buildings, both for real estate and commercial properties or larger building complexes. This is because the calculations are based on the concrete key data of the respective building.
Independent consulting still necessary
With this instrument, AEE wants to support the decision-making process for the conversion of the heat supply to modern, renewable energy sources. „The results are to be understood merely as an estimate, which gives an orientation for the profitability of different systems and supply concepts, but cannot replace an individual cost calculation by independent consultants“, emphasize the developers of the online tool.
Adapted to the current development
New compared to the previous version is the adaptation to the current legislation. This is because, among other things, an option has been added to the cost calculations that allows users to depict different scenarios for the development of CO2 prices. In addition, the limit for the power of the building’s energy system was raised to 150 kilowatts and the classification of building efficiency was integrated. Furthermore, the new technological developments have also been taken into account. In addition, users now find explanations why only certain energy sources are shown for their data. The updated heat compass can be found on the AEE website. (su)
MY PV builds itself a new all-electric domicile with solar facade
The company's own solutions and the building integration of photovoltaics are the basis in the planning of the new headquarters of My PV. Solar power from the facade and roof provides heating and cooling.
My PV, a provider of solutions for solar-electric heat generation, is building a new company facility in Sierning in Upper Austria. With 900 square meters of floor space, the building offers enough room for the company’s further expansion. With this building, My PV is also implementing the new standard in solar construction and solar-electric energy supply, which the company is pursuing with its own solutions.
Solar modules become the basis for planning
The solar system is not planned and implemented as an add-on to the building. Rather, the opposite approach is being taken: starting with the solar modules, on whose dimensions the design is based, the company builds the outer shell around the solar system. „Such an approach has never been seen before. We are ahead of our time and are setting new trends,“ says CEO Gerhard Rimpler with conviction. In this way, the facade becomes the support for part of the modules. In addition, the south, west and east facing parts of the monopitch roof are covered with solar modules, which also contribute to the power supply directly in the building.
Solar facade and solar roof provide electricity for heat
In this way, My PV succeeds in integrating almost 300 solar modules into the building’s skin. With their total power of around 100 kilowatts, they cover part of the building’s energy needs. This is because the modules not only supply the electricity for production, the offices and the recreation rooms. They also provide energy for heating, cooling and hot water supply. „At our new location, we are consistently implementing our maxim of ‚cables instead of pipes,'“ emphasizes Gerhard Rimpler, who is visibly installing the solar-electric building technology in the building. Visitors can thus follow the hot water tanks, the AC Thor 9s power manager and the AC Elwa-E water heater live in operation in a showroom. Monitors visualize the current solar power production and show where and how much is currently being consumed.
Focus on sustainability and working atmosphere
However, My PV does not only focus on the highest possible share of solar-electric energy supply. Sustainability and a pleasant working atmosphere are also at the forefront of the planning process. Among other things, this enables the company to avoid the necessary sealing of surfaces as far as possible. To create a pleasant atmosphere for employees, large windows provide good lighting. Added to this is effective soundproofing, which prevents noise emissions from production to other rooms.
Completion scheduled for 2021
In order for My PV to retain its current and successful team of employees, the new building was intentionally planned close to the current location in Neuzeug. The new additions are My PV’s response to the increased demand for its solutions. This will allow the company to triple the usable space for its offices, production, warehouse and research. The building is scheduled for completion in August 2021. In parallel, My PV will create jobs for 35 new employees in the medium term. (su)
Organic solar films win German Sustainability Award
Armor Solar Power Films wins the prestigious award for sustainable products and business concepts. Further companies in the field of building services engineering are also among the award winners.
The organic solar film manufacturer Armor Solar Power Films has won one of the most prestigious German Sustainability Awards. The French-German company prevailed over its competitors in the category climate.
No critical raw materials in the product
With this award, the jury honors the approach of environmentally friendly and innovative power generation that is possible with organic solar films – also in comparison to conventional photovoltaics. „But also the low use of resources and pollutant-free materials are arguments in favour of the production of the organic photovoltaic components,“ the jurors emphasize. „Compared to conventional photovoltaic technologies, the solar cells contain neither heavy metals nor rare earths.“
Power generation everywhere possible
The jury also honored the approach of solar films that can be produced to customer specifications. This is because they allow solar-active surfaces to be produced for energy generation.“The organic photovoltaic elements are semi-transparent, flexible, ultra-thin and can be used in a variety of applications,“ the jurors explained their decision. „In this way, they can be integrated into various products of different industries for energy generation. The company is thus focusing on broad-based power generation: Each possible product – from buildings and cars to small electronic applications – is to be equipped with a solar-active surface“. The organic solar elements also enable energy generation in urban areas through small surfaces.
Part of the energy mix of tomorrow
The award shows that the role of organic photovoltaics (OPV) in the energy mix of the future is being recognized, emphasizes Ralph Paetzold, CEO of Armor Solar Power Films based in the German town of Kitzingen. „This motivates us to continue working hard to ensure that its potential is fully realized,“ he says. „This award proves that OPV can meet the energy challenges facing the world today in the long term,“ adds Hubert de Boisredon, Chairman of the Board of Directors of the Armor Group, headquartered in Nantes.
Fittings with a high share of recycled metals
Grohe, another company in the field of building technology, has won a German Sustainability Award. The manufacturer of fittings and sanitary products came out on top in the category Resources. The jury was particularly impressed by the high proportion of metals from recycling that Grohe uses for its products. After all, this is almost 80 percent. In addition, the jurors also praised the fact that the company thinks about the sustainable use of resources right from the product development phase.
Saving water and energy
This is not only about the materials, but also about saving water and energy, which Grohe focuses on with its products. „We have a responsibility to future generations and therefore also to the environment, and that is precisely why we want to continue to give new impetus in the field of sustainability in the coming year, making responsible use of resources possible,“ explains Thomas Fuhr, one of Grohe’s CEOs.
Energy-efficient pumps honored
The jury gave similar reasons for the award to pump manufacturer Wilo, the third company in the field of building technology to win a German Sustainability Award. Wilo not only focuses on energy efficiency in its product developments, but also uses an increasing share of recycled materials for its pumps. In addition, the jury praised Wilo’s approach to developing pumps in such a way that they can be almost completely recycled. (su)
Actual study: Solar façades and solar roofs are profitable
The additional costs for a solar building envelope compared to conventional construction methods amount to 30 to 50 percent of the costs for the façade and roof. However, the electricity yield leads to a higher return on investment.
The roof and façade integration of a solar system rises the construction costs of the building envelope. But the additional costs are manageable and range between 30 and 50 percent of the total costs for a façade or the roof, depending on the application. This is the result of a study conducted by the Swiss Planning Office for Solar Façades CR Energie on behalf of the Swiss Federal Office of Energy (BFE) and Energy Switzerland.
Only add additional costs for photovoltaics
For this purpose, five reference buildings were examined to determine the additional costs of integrating photovoltaics compared to a conventional building envelope. The total investment costs were considered. Thus, not only the costs for the mounting and the façade material itself, which are incurred anyway, were included, but also a possibly higher price for the solar modules compared to the passive façade material as well as the additional costs caused by the photovoltaics. These range from the cabling and power electronics to the connection of the systems to the grid and the building electronics. „Design aspects, on the other hand, do not lead to additional investment that can be attributed to photovoltaics,“ explains Christian Renken, Managing Director of CR Energie, when presenting the results at this year’s Symposium Solar Construction, which was organized by Swissolar and the Austrian Technology Platform Photovoltaics (TPPV). „These cannot therefore be attributed to the photovoltaics“.
Solar roof costs 41 percent more
When i analyzed the integration of monocrystalline modules into the roof of an apartment building, it was found that the total cost of BIPV is 990 Swiss francs per square meter. An alternative covering with fiber cement slate would have cost 586 Swiss francs per square meter. Thus the additional costs for BIPV are 41 percent. At 45 percent, the additional costs for a façade built with monocrystalline glass-glass in comparison to a conventional glass façade are similarly high.
How much more costs a custom-made solar façade in a new building?
Even if customized colored solar modules are used in the façade, the additional costs for photovoltaics remain well below 50 percent compared to a fiber cement slate façade. In the new building examined here, the additional costs for the custom-made modules were even lower at 42 percent than for a façade with standard modules.
The economic efficiency can be improved
At first this sounds a lot. But CR Energie has evaluated the economic efficiency. This is not only made up of the investment costs, but must also include the yield from the solar façade. This economic efficiency depends, among other things, on the consumption of solar power on site. The higher this is, the more the operating costs for the building decrease.
Return on investment increases
In many cases, this increases the return on investment above that of a conventional building envelope. After all, the inactive shell only generates such a return through the depreciation of the building component, whereas the solar system adds the electricity yield. The return on investment is between one and four percent if the system is integrated as part of a building renovation. If the solar system is integrated into a new building, the return on equity is between two and eight percent. The inactive façade generates a return on investment of around five percent. In the case of roof renovation, it is less than one percent and even becomes negative without tax deductions.
Use high quality systems
However, the profitability depends on other factors. „Integral planning is crucial in this context,“ explains Christian Renken. „Thus, the solar façade must be taken into account in the planning right from the start“. But low maintenance costs for the integrated solar system are also decisive. „That is why it is important to use durable systems,“ emphasizes Christian Renken. In this way, the additional costs for the active building envelope can be limited to 30 to 50 percent, but these are amortized within a few years through the electricity yield. (su)
William Chen from Aleo Solar: „Every building should be a power plant“
Building-integrated photovoltaics is slowly but surely venturing out of its niche. William Chen, managing director of Aleo Solar, has ideas for speeding up the integration of solar systems into the building envelope.
The city of the future needs more solar buildings. What progress has been made in this segment in recent years? William Chen: Some architects and building owners currently still prefer to work with conventional building materials, of all materials in the facade. Often, dealing with power generation in the building envelope is still an obstacle.
In addition, there is the debate about costs. How can one deal with this? The additional costs for a solar-active building element will be recouped by the energy production within a few years. In addition, the costs for photovoltaics have fallen drastically in recent years. We should now also use this development for building integration. However, I am sure that we will come to the moment when all new buildings will be fitted with glass that generates electricity. Demand will increase accordingly, albeit more hesitantly than in the rest of the solar market.
What do architecture and the solar industry need to develop BIPV faster? The support of the European Commission would certainly help in this respect. After all, building integration will be a very important part of the energy transition and Europe must become a leader in this segment. We cannot wait to see what happens with BIPV in other parts of the world.
What regulations would be necessary there? The EU Commission has developed a standard for zero-energy houses in new buildings. This is a good approach and will help us. This now needs to be further developed for renovation. In the future, all buildings should become small power plants that generate their own electricity in the shell.
Nevertheless, the application of existing products is progressing slowly. What is the reason for this? On the one hand, the application is not easy for the construction industry. Electricity in the building envelope is rather a new topic that still leaves uncertainties. There is often a lack of knowledge and experience of how photovoltaics can be integrated into the facade – even in an aesthetic way. This is where the chambers and architects‘ associations, among others, are called upon.
What can the associations and chambers do? We would like BIPV to have more relevance in the education and training of architects. Furthermore, an incentive program for the construction industry to include photovoltaics in new buildings and renovations would certainly help to create more progressive developments and employment opportunities in this segment. The program can be implemented together with other factors such as energy consumption labels and the development of product efficiency.
This of course requires appropriate building materials. What does Aleo Solar have in its portfolio? We have developed various products. Our portfolio for building integration ranges from double glazing elements with two times four-millimeter safety glass for facades, carports or other applications for overhead glazing to insulating glass that architects can insert into post and beam constructions. These products are all certified building products. In addition, there are our modules for the Solrif system from Ernst Schweizer AG, which are integrated into the roof.
With a view to the solar building: What further developments on the module side can you imagine here – or are you already following? The next step we are pursuing is cooperation with the construction industry. Because it is important that the manufacturers of building materials and the solar industry work together to develop innovative products and bring them into the market. We are now starting such collaborations, initially in Europe as a blueprint for further cooperation with building materials manufacturers in other parts of the world.
The interview was conducted by Sven Ullrich.
William Chen is CEO of Aleo Solar. The module manufacturer produces a comprehensive range of products for the structural integration of photovoltaics in its factory in the Brandenburg town of Prenzlau in Germany.
Sun barn receives environmental and building price
A barn that was renovated in accordance with the regulations for the protection of historical monuments was equipped with a pioneering energy concept. This has been awarded the Federal Prize for Environment and Building of the German Federal Ministry of the Environment.
The sun barn is an old, listed barn of a four-sided farm in the Altenburger Land in the northeast of the German state of Thuringia, which was completely renovated and equipped with a modern energy concept. Thus it not only achieves the standard of a passive house, but is also completely self-sufficient in heat and electricity.
Building of the future shown
The project was awarded the Federal Prize for the Environment and Building for its outstanding energy concept and the renovation using sustainable and ecological building materials. This prize is awarded annually by the German Federal Ministry for the Environment to outstanding building projects that mark the standard of architecture and building of the future. „The assessment by an independent jury is confirmation that we are on the right way with our project and that we can inspire other building owners to realize their ideas,“ says owner Axel Erler happily. „The historic Altenburg farms were built at a time when building was still being carried out with regionally available resources and managed in cycles. In the future, we must return to these principles“, he explains the use of ecological building materials in his cultural monument.
Sun is available free of charge
He has chosen to use the sun as the most natural source of energy on earth. „Capturing, storing and consuming this energy, which is available almost everywhere, directly or in the form of water and wind power, at the place where it is needed is the key to the door that will lead us to a sustainable and renewable energy supply. We would also like to thank all our project partners who have supported us in word and deed so far“.
Stock must be decarbonized
In addition to the planners and architects Claus Krüger and Andreas Wohlfarth, these included solar expert Timo Leukefeld, who developed the energy concept. „The sun barn in Plottendorf generates more energy than it consumes itself. That is the future,“ emphasizes Claus Krüger. Because existing houses must also become low-energy buildings. This should not only apply to new buildings. „Because that is precisely where the great potential for energy savings in Germany lies. That’s why it’s our job to think things through in our profession and offer structural solutions. This is our responsibility for environmental and climate protection,“ says Krüger.
ACE supports the EU Commission’s New European Bauhaus initiative
The Architect's Council of Europe sees the New European Bauhaus initiative as a promising basis for a fundamental change in building, landscape and urban design. It offers the EU Commission extensive cooperation.
The Architects‘ Council of Europe (ACE) supports the European Commission’s plan for a more sustainable architecture and construction industry. It expressly supports the approach of the New European Bauhaus, which was presented as part of the EU decarbonization strategy. „The renovation wave is not just an environmental or economic project: it needs to be a new cultural project for Europe,“ said Georg Pendl, president of the ACE. „This can be the start of a game-changing policy, as renovation isn’t seen as a technical issue only, but promotes a holistic approach, not only including the quality of the design, but putting it at the core.“
New Architecture and Materials
On the one hand, the interdisciplinary project of the New European Bauhaus is to become a network of planners, architects, companies, students and citizens who are committed to sustainability in architecture. But it should also be an accelerator for socially and aesthetically promising green and digital solutions, technologies and products. „It will foster innovative solutions in terms of architecture and materials,“ the EU Commission writes in its strategy.
Among other things, this involves the use of natural building materials – the EU Commission cites wood as the building material of the future. With a view to embedding it into the decarbonization strategy, however, it is also important to activate the building envelope.
Holistic approach to more sustainability in architecture
ACE sees this approach as a door opener to a more holistic approach to our built environment, seeking to enhance, at the same time, economic, social, environmental and cultural values as it emphasizes in its declaration. „The holistic thinking and cultural approach that underpin the New European Bauhaus initiative must lie at the heart of the Renovation Wave strategy and inspire all its measures to raise the full potential of the strategy and achieve a ‚quality renovation wave‘, making a difference in people’s minds and quality of life, and achieving Europe’s climate neutrality objective.“
Enabling exchange across different disciplines
This approach is needed at all spatial scales, whatever the size of the project – from landscape architecture to town planning, neighbourhood development, infrastructure, buildings and interior architecture and design, emphasize the association. „We very much welcome the ambition of the European Commission to facilitate exchanges across disciplines, as we share the view that it is the best way to track creativity and innovation“, they write in their statement.
Active support announced
They want to actively support the initiative, either by acting as an information platform that reaches a large audience through their member organizations, or in the education and training of architects, urban and building planners. They can also support the creation of a collection of best practice examples and provide a center of knowledge and expertise to help the European Commission to further design the initiative and ensure that its process delivers the desired outcomes. They can also bring on board the authorities and decision-makers with whom they are in regular contact in their daily work at all levels of government. (su)
The Slovenian manufacturer Bisol has coloured modules for aesthetic solar roofs in its portfolio. Vela Solaris has extended its Polysun planning software with a BIM add-on. M-Tec combines heat pumps with other components for sector coupling in buildings.
Coloured modules for solar roofs
The Spectrum series from Bisol is designed for the realization of aesthetic solar roofs. Because the homeowner can choose between monocrystalline glass-foil panels with coloured module glass and polycrystalline modules with toned solar cells. They come to the customer with a color-matched frame, without a frame or with a special frame for roof integration with the Solrif system from Ernst Schweizer AG. There is a comprehensive warranty package for all of them.
Digitize planning
With the new BIM Add-On for the current version Polysun 12, Vela Solaris is consistently following the path of digitalization in the whole energy planning of the building. This makes it easier to coordinate the various trades and specialist planners and thus integrate photovoltaics into the building planning process.
Heat pump package tied up
The Austrian heat pump manufacturer M-Tec combines its devices with other applications. Thus the customer can select whether he wants additionally to the heat pump a storage system, a charging station for his electric car or adjustable electrical heating rods. An integrated energy management system ensures that the devices primarily use solar power from the building shell or from the roof.
Club members of Solar Age can read more details about the products presented here in our product database.
Der slowenischer Hersteller Bisol hat farbige Module für ästhetische Solardächer im Portfolio. Vela Solaris hat seine Plaungssoftware Polysun um ein BIM-Add-On erweitert. M-Tec fasst Wärmepumpen mit anderen Komponenten zur Sektorkopplung im Gebäude zusammen.
Farbige Module für Solardächer
Die Spectrum-Serie von Bisol wurde für die Realisierung von ästhetischen Solardächern entwickelt. Denn der Hauseigentümer kann wählen zwischen monokristallinen Glas-Folie-Paneelen mit farbigen Modulgläsern und polykristallinen Modulen mit farbigen Solarzellen. Sie kommen mit einem farblich passenden Rahmen, ohne Rahmen oder mit einem Spezialrahmen für die Dachintegration mit dem System Solrif der Ernst Schweizer AG zum Kunden. Für alle gibt es ein umfangreiches Garantiepaket.
Planung digitalisieren
Mit der neuen BIM Add-On für die aktuelle Version Polysun 12 geht Vela Solaris konsequent den Weg der Digitalisierung bei der gesamten Energieplanung des Gebäudes. Dadurch wird es einfacher die Gewerke und Fachplanungen zu koordinieren und dadurch die Photovoltaik in die Gebäudeplanung mit einzubeziehen.
Wärmepumpenpaketet geschnürt
Der österreichische Wärmepumpenhersteller M-Tec kombiniert seine Geräte mit weitere Anwendungen. So kann der Kunde wählen, ob er zusätzlich zur Wärmepumpe einen Speicher, eine Ladestation für sein Elektroauto oder regelbare elektrische Heizstäbe will. Ein integriertes Energiemanagement sorgt dafür, dass die Geräte primär den Solarstrom aus der Gebäudehülle oder vom Dach nutzen.
Weitere Details zu den hier vorgestellten Produkten lesen Club Member von Solar Age unserer Produktdatenbank.
Conference on the integration of photovoltaics is scheduled for November 2020
Solar Power Europe and ETIP PV are organizing a free online conference that will focus exclusively on the integration of photovoltaics in any way. The main focus will be on building integration.
Integrated, innovative, intelligent – with this motto, the speakers at a conference on 18 and 19 November 2020 will show all the possibilities for integrating solar modules. This includes the integration of solar modules into the building envelope, but also the integration of modules into vehicles or infrastructures.
BIPV is in the spotlight
The organizer Solar Power Europe (SPE) is holding a live discussion between investors, architects, solar module manufacturers and project developers in the first session on November 18. This will focus primarily on the requirements for products of building-integrated photovoltaics (BIPV) and the solutions that already exist. The key is not only the aesthetic issues, but also the questions of cost-effectiveness, i.e. how the solutions can be made available at a competitive price. BIPV can also benefit from the price reductions that photovoltaics has achieved in recent years.
Diverse integration possibilities
In addition, the first day will focus on the integration of solar modules in vehicles and in local energy systems such as autarkic island systems. The second day will concentrate on the integration of photovoltaics in agriculture and in the water supply infrastructure.The conference will conclude with a discussion between high-level representatives of the EU Parliament, the European Commission and the European Technology and Innovations Platform Photovltaic (ETIP PV).
Participants can register for the free conference on the ETIP PV website. There you will also find the complete program. (su)
Peter Röthlisberger of Solaxess: „The price drops by two thirds“
Solaxess has been producing a special film for white modules for several years. The company will soon launch a further development on the market. Sales Manager Peter Röthlisberger explains the advantages it provides.
At the beginning of this year you announced that Solaxess is working on a new version of the special film for colored modules. How is the solution developing? Peter Röthlisberger: We are well on schedule, even if the corona situation means that we will enter the market later than planned. At the same time, we were also able to use these calmer moments to make progress in development than would have been possible during a normal business period. Initially we wanted to apply the new film outside the module under ETFE or an additional glass. In the next development step, the film should be laminated directly into the module. During the tests with our partners we realized that both solutions are very similar. Therefore we are now developing both variants in parallel and will launch both at the same time.
What is the challenge of the developement? Since the film will be part of the module, we are still going to pre-certify it. The film will also be available in darker colors such as terracotta.
Why is pre-certification necessary? We will get a TÜV certificate for the new product. This makes it easier for module manufacturers to get a TÜV certificate for their products if they integrate the film. Otherwise they would have to carry out the entire certification process.
So the colored modules will be on the market faster? Not only. It will also be much cheaper for the module manufacturers. In that case, the certification process will only take two to three months. Pre-certification also reduces costs to about one-fifth compared to a full certification procedure.
Why are you developing two variants? There are customers who want the ETFE surface also because of its haptics and because it can be structured, pressed and imprinted. These are mainly architects and large construction companies. On the other hand, module manufacturers will be better placed if they can laminate the film into the module, which will reduce manufacturing costs and allow more module manufacturers to offer colored panels.
What cost reductions are possible? With the new technology we reduce the price of the film by about two thirds. We have further developed the existing films without reducing the aesthetic and optical properties. We have also chosen a different and cheaper production process for the new variant. In addition, it is now easier for module manufacturers to handle, as it is no longer necessary to apply a composite of four individual foils to the glass, but instead either the glass already prefabricated with the foil or the foil is laminated directly into the module. Module manufacturers have such processes well under control. For the end customer, this makes no optical difference to the previous variant, but the costs are reduced.
On the other hand, prices also fall with scaling up of production volumes. How is the demand for Solaxess films developing? Currently almost 40 module manufacturers are ready to test our new development. So demand from end customers seems to be very high. This will also have an impact on the price. With all other factors, we can reduce the additional costs for a colored module to around 140 to 100 euros per square meter in 2021 compared to a high-quality facade material. Our goal is to reduce the additional costs for colored photovoltaic facades to 50 euros per square meter in the medium term if the solution is manufactured and processed in fully automated production.
What strategy do you have to get more architects interested in colored modules? There will be architectural projects like the ones we have implemented so far. On the one hand, from the point of view of the building owner as the end customer, we are talking about facades in which many modules with individual dimensions and shapes are installed. On the other hand, there are large facades that are realized with just a few different module dimensions. In addition, there is also the offer to architects, who have varying degrees of flexibility. Because some want a special color, but are able to adapt to the standard dimensions in terms of module sizes. Others realize the facades with a color offered by us.
Do you offer more different colors than before? Yes. We will start this year with a few different colors and expand the spectrum in spring 2021, so that we will then have 15 or 16 colors to choose from. In addition, we can also offer the films with different transparency.
Until now, one of the main arguments has been that you don’t see solar technology. With more transparent foils, the solar cells become visible. Is this a response to market demand? There are architects and builders who place great value on aesthetics and want solar technology to be invisible. They will continue to work with the opaque films. But we also have inquiries about adding color to facades and customers are willing to make aesthetic compromises.
But there will still be the possibility of individual colors?
Yes. We can adapt the color to the specific wishes of the customer. The requirement is that at least 2,500 square meters of each color are needed to make it worthwhile. Although the development takes four to five months, we can offer any RAL color and have the newly developed color in stock.
What are the advantages of that? Until now, planners have always ordered around ten percent more modules than they needed when using printed glass. In this way, they always had a replacement module in the matching color in the case of a defect. That’s no longer necessary with us. Because we can reproduce the color exactly at any time.
Different module sizes and shapes are certainly no problem with the film? We have a production width of 1.10 meters. Since the modules with 60 cells are getting bigger and bigger, we are expanding this to 1.20 meters. The foil can of course be cut to produce narrower modules. If the modules are wider, for example if a dimension of two by four meters is required, then you simply lay two foil strips next to each other and cut them off at the outer edges. In the lamination process, these will then join together to form a single surface.
If an architect wants the colored modules, what is his path to the product? At the moment the architects come to us. We execute the project together with a suitable module manufacturer, who is based in the region where the facade is to be built. We supervise the project until the manufacturer takes it in hand. In the future, however, we will specialize in the production and further development of the film. For this reason, we will be opening our website next year so that customers can contact a module manufacturer directly via this website. I assume that from 2021 they will be able to contact around 30 to 40 producers.
The interview was conducted by Sven Ullrich. It is part of the architecture issue of the German professional magazine photovoltaik, which you can order here as a single issue.
Which architectural possibilities the Solaxess solution provides can be found in corresponding dossiers in the Solar Age project database. You can use these free of charge after registering as Club Memeber. Just enter Solaxess in the search mask as the company involved. (su)
Solar facade refinanced with power purchase agreement
The radiological center in the German city of Marburg is getting a modern solar facade. The public utility company will sell the electricity in the building. In this way, the facade will be refinanced.
The construction of a solar façade often fails because the house owner – usually an investor in larger projects – does not know what to do with the electricity. Feeding into the grid is usually not economical. The Marburg public utility company and the Sonneninitiative, a solar initiative based in the Hessian university town, have found a solution to this problem.
Curved modules designed
Together, both partners want to renovate the radiology center not far from the main train station in Marburg. The solar architects of the planning office A.P.L. – Architekten Plaehn and Lüdemann from Hanover have already drafted a design. It provides for a complete implementation of the southwest and southeast oriented sides of the building as a solar facade and the redesign of the entrance area. This will be rounded off towards the outside. Sunovation from Elsfeld in Lower Franconia has already delivered the specially manufactured monocrystalline modules. The rounded entrance area will also be constructed with curved special modules. This means that the power output of the facade will reach 50 kilowatts.
Solar technology becomes invisible
The modules have a black appearance with discreetly visible cells. The rear glass is colored black and on the front side the wiring of the cells is darkly covered. This makes the solar technology almost invisible, but the original efficiency of the high-quality monocrystalline cells is largely retained.
Production and consumption go together
The costs for the solar façade are refinanced by the municipal utilities themselves by selling the solar energy to the radiological practice, which is housed in the building. This practice has a very high energy demand due to its imaging equipment such as MRT, CT and X-ray machines. This demand corresponds to a large extent to the yield curve of the solar facade. With this long-term electricity supply contract, also known as a Power Purchase Agreement (PPA), the practice can cover its equipment pool with green electricity produced on site, the building becomes an aesthetic example of forward-looking architecture and the electricity produced in the facade has found a consumer.
Energy transition aesthetically implemented
With the draft the architect’s office wants to show also the future of the urban energy production, with which all available surfaces have to be used for energy production. Of course, visible surfaces should be subject to the aesthetics of urban architecture. At the same time, however, it is a real energy turnaround project – decentralized and with citizen participation. The Sonneninitiative enables investors to participate in the project by buying individual modules.
New opportunities for homeowners
This external financing opens up completely new possibilities for architects, planners, project developers and property owners. The project partners hope that this will attract as many imitators as possible. After all, solar facades are more expensive than a simple rooftop system or a solar park. But on the one hand, aesthetics play an important role in this case. On the other hand, photovoltaics is becoming a design tool in architecture. In addition, a building needs a facade anyway. Solar activated it earns money and pays for itself, which is not the case with a passive facade. (su)
For a long time the heat pump was not considered as solution for existing buildings. A building in North Rhine-Westphalia proves the opposite. It won the first prize in a competition of the German Heat Pump Association.
Germany will break the one million mark of installed heat pumps still in this year. That is the assumption of the German Heat Pump Association (BWP). For this reason the industry representatives announced a profit play, in which all owners of house could participate, who heat their building with a heat pump.
Heat pump also in the old building possible
Now the winner is decided. It is the owner of an old clinker building from the 18th century. After the building was renovated, the Krefeld installation company Lumitronic also upgraded the heating system to the latest state of the art. Now the owner of the two-storey building from 1771 in the small village of Wachtendonk, not far from the border with the Netherlands, heats with a heat pump from Alpha Innotec.
After all, it is one of the oldest buildings still existing in the village. That convinced the jury. Because for a long time the heat pump was not considered possible in the existing buildings. The required supply temperatures for the old heating systems were too high. But by an energetic reorganization, the change of the allocation of the interiors and above all the installation of an under-floor heating the heat pump can supply the necessary energy for warming the rooms.
Low ceilings were a challenge
The project was not easy to implement. The building had to be renovated in coordination with the preservation of historic monuments. Therefore, the workers had to do without external insulation of the facade. An internally applied layer of calcium silicate therefore protects against heat loss. When laying the underfloor heating, the installers had to cope with a very low residual load-bearing capacity of the wooden beam ceilings. It was not possible to reinforce them, as the ceilings are already very low. They therefore used a system with particularly thin heating layers. This, together with the screed, comes to a minimum of four centimeters in height.
Earth probe drilling as a precision job
A geothermal heat pump was installed as the heating system. With its 7.5 kilowatts of power, it provides enough energy to keep the interior comfortably warm and at the same time provide sufficient hot water. An integrated cooling function also ensures a pleasant climate in the rooms on hot summer days. „An inner courtyard belongs to the house, extremely narrow. This is where we were able to place the earth probe,“ recalls Ulrich Konen, CEO of Lumitronic. „That was almost millimeter work, but the people from our partner for the earth drilling are really good. Using a special drilling rig, they drilled two boreholes, each 80 meters deep.
Environmentally friendly heating at low cost
Now the approximately 250-year-old building has reached an efficiency standard of KfW55. The house owner is happy about an environmentally friendly heating system low heating costs. „I heat the approximately 180 square meters of living space for less than 500 euros a year,“ she emphasizes. (su)
Dräxelmaier, an automotive supplier in Vilsbiburg, Bavaria, has built a huge solar roof over a parking deck. The 4,200 modules are regulated building products. They not only supply electricity, but also perform additional functions.
The automotive component supplier Dräxlmaier has roofed a parking deck on its company site with solar modules. Previously, employees had to walk unprotected from the parking lot to their workplace in all weathers. In addition, on hot summer days the cars heated up extremely because they were standing in the blazing sun. This increased the need for cooling and thus also fuel consumption and CO2 emissions.
Substructure adapted to module size
As a supplier to the electromobility industry, among others, this is an unacceptable situation for Dräxlmaier. That’s why the company initially decided to use solar roofing for the parking deck instead of building the modules on the roofs of the company buildings first. For this purpose, installers from Rudolf Hörmann, a installation company from Buchloe in Swabia, built a substructure designed to install standard-sized solar modules.
Regulated building product used
In this substructure, they inserted 4,200 Vision 60 M Construct glass-glass modules from Solarwatt. The decision was made in favor of these modules because they have a general building authority approval from the German Institute for Building Technology (DIBt), and the standard size also simplified the planning of the substructure. Since they are thus approved as a regulated building product, the modules can be used as overhead glazing for roofing private and public spaces without the need for separate building approval or additional safety measures. This simplified the entire construction process considerably.
Solar power in the battery of electric cars
The electricity from the plant with a capacity of a whopping 1.28 megawatts is mainly used within the company. Employees can fill excess solar power into the batteries of their electric cars. For this purpose, 350 charging points were installed on the parking deck.
Switzerland: Bern prepares to abandon oil and gas heating
The Swiss government and parliament have passed an amendment to the CO2 law. It provides for far-reaching changes for heating systems in existing buildings.
The Swiss government wants to decarbonize the country’s stock buildings. At least this is part of an amendment to the CO2-law that was passed by the government and parliament. The amendment is now going into the referendum.
CO2 emissions of the buildings should be reduced
The new regulations for the building sector require the cantons to ensure that CO2 emissions are reduced to such an extent that they are 50 percent below 1990 levels on average in 2026 and 2027. In addition, concrete limit values for the buildings are set. For example, heat generators in old buildings, when they are renovated, may only emit 20 kilograms of CO2 through the use of fossil fuels from the year 2023 and onwards. This limit will be reduced in five-year steps by five kilograms a year. This shows that new heating systems will no longer be allowed to use fossil fuels from the year 2043, because the limit value for permitted CO2 emissions will then fall to zero.
CO2-neutral fuels produced with renewable energies can only be credited up to 50 percent of the target. Heating systems may continue to emit CO2 from gaseous and liquid fuels if the building envelope is energetically activated at the same time.
CO2 tax on fossil fuels
At the same time, a CO2 tax on fossil fuels will be levied, affecting all homeowners who use it to heat their buildings. It is collected from the manufacturer or importer of the fuels via the Mineral Oil Tax Act. The manufacturer or importer can then pass it on to the end consumer. This money is used to reduce CO2 emissions in buildings. Every year, 60 million Swiss francs from the CO2 tax are available for cantonal, municipal or supra-municipal regional energy planning for renewable energy sources, for example.
Support for energy-efficient renovation
But the money will also be used to finance geothermal projects and the replacement of fossil heating systems with electric heating systems – if these are operated with green energy. In addition, Berne is also using the money to promote the energetic renovation of building envelopes and the expansion of the charging infrastructure for electric cars in apartment buildings and the production of renewable gases.
Reduction targets have to be realized now
With the new standards, which regulate not only CO2 emissions from buildings but also from the transport sector, the Swiss government aims to reduce greenhouse gas emissions to 50 percent below 1990 levels by the year 2030. The average CO2 emissions for the years 2021 to 2030 have to be at least 35 percent below the 1990 level. This means that the reduction targets have to be tackled right now and cannot be waited until the end of the decade. (su)
Ten cottages on the island of Rügen have been equipped with an energy concept that is designed for all-electric operation. The solar electricity produced on site also provides heat.
The operator of vacation accommodation Fynnus has developed a new resort on the German Baltic Sea island of Rügen with a future-oriented energy concept. Because the ten brand new vacation domiciles are supplied exclusively electrically with warmth. For this purpose, the roofs facing south, east and west were covered with solar modules. On the one hand, these supply the electricity for the electrical devices in the two apartments, which are available for guests in each of the vacation homes.
Solar power in hot water
Most of the solar electricity is, however, initially consumed by electric heating elements. If there is excess solar power, a power manager from the Austrian manufacturer My PV sends it to electric heating elements. These in turn warm the water in a heat storage tank installed in each of the ten houses. In this way, up to 85 percent of the solar electricity generated can be consumed locally. Surpluses flow into the distribution network. If the solar power output is not sufficient, a hot water backup system ensures comfortable temperatures – both in the rooms and in the service water.
Climate-neutral factory awarded the Bavarian Energy Prize
The Alois Müller Group has built itself a production and office building that operates completely without CO2 emissions. To achieve this, the company has implemented a complex energy concept.
Completely free of CO2 emissions is the new production and office building of the energy, ventilation and air-conditioning technology manufacturer Alois Müller Group. The heart of the Green Factory in Ungerhausen with its 18,000 square meters of usable space is a huge photovoltaic system. The more than 200,000 solar cells on the roof achieve a power output of 1.2 megawatts. The modules supply enough energy to operate the entire production building almost two-thirds with solar power.
Extensive data collected and evaluated
In order to optimize the use of solar energy on site, the Alois Müller Group has precisely analyzed the entire material and energy flows required for the individual production steps. For this purpose, the individual production data were collected and evaluated over several years. In this way, the potential of load shifting and load management can be fully exploited. Intensive power consumers such as the laser machine are now mainly operated when sufficient solar power comes from the roof.
Storage concept built without batteries
In addition to this, temporary surpluses are buffered in a compressed air system, which mainly occur on weekends. The company then also produces the auxiliary materials such as fully demineralized water in its own reverse osmosis plant or nitrogen itself, and can thus also use solar power during times when production is at a standstill.
Production planning based on the path of the sun
Even now, the production data is still recorded and permanently compared with the current weather forecasts and the order situation via an intelligent Enterprise Resource Planning (ERP) system. This enables the company to plan the individual production steps precisely, taking into account the production of solar power and the available workforce.
Blueprint for the factory of the future
This comprehensive and successful energy concept has now been awarded the Bavarian Energy Prize. With this award, the Free State of Bavaria honors outstanding achievements in the field of energy every two years. The Green Factory was able to prevail in the category „Energy distribution and storage – electricity, heat“. „Our Green Factory is so far unique in Germany – but it doesn’t have to stay that way,“ emphasizes CEO Andreas Müller. „On the contrary: The concept of the Green Factory, i.e. the generation of solar power, the applied demand side management, the practiced sector coupling and the internal intelligent power grid, the so-called Smart Grid, can be adapted for almost all companies in Germany“. He invites all companies that want to see for themselves to visit his Green Factory. „If required, we will also present all components with the necessary key figures,“ explains Müller. (su)
Nächste Generation für GES Gebäude-Energiesysteme GmbH gesucht
Die Firma GES Gebäude-Energiesysteme GmbH in Korbußen bei Gera sucht einen neuen Eigentümer und Geschäftsführung. Der Grund: Nach knapp 30 Jahren Aufbauarbeit gehen die beiden Geschäftsführer in den Ruhestand. Das grundsolide Unternehmen verfügt über volle Auftragsbücher und hochspannende Projekte.
Die GES Gebäude-Energiesysteme GmbH ist eine Solarmanufaktur der besonderen Qualität. Klein, aber fein: Schon frühzeitig haben die beiden Gründer und Geschäftsführer Joachim Höhne und Hans-Uwe Florstedt die anspruchsvolle Nische der Sonderformate für die bauwerkintegrierte Photovoltaik (BIPV) erkannt. Die Auftragslage ist sehr gut, die Projekte durchweg außergewöhnlich.
Die Käufer oder neuen Geschäftsführer sollten technische und kaufmännische Expertise mitbringen, verbunden mit einem Engagement zur Photovoltaik in all ihren Nuancen und Anwendungen. Auf Wunsch begleiten die beiden Gründer den Übergang einige Zeit mit ihrem Wissen und ihrer Erfahrung.
Know-How:
Die GES Gebäude-Energiesysteme GmbH bietet Verarbeitungstechnologien und Modulaufbau mit kristallinen und organischen Solarzellen:
Glas-Folien, gerahmt und ungerahmt,
Glas-Glas, gerahmt (2 x 2 mm Glas) ungerahmt bis zu (2 x 12 mm),
Digitaldruck auf Glas für farbliche Gestaltung,
Photovoltaik-Isoliergläser,
Organische Photovoltaik in Glas-Glas oder Folien-Folien-Verbund,
Folie-Folie als flexible Varianten in Active-Wire-Technologie,Solarzellen auf Leichtbaumaterialien (Entwicklungsprojekte),
Solarzellen auf Aluminiummaterial (Entwicklungsprojekte),
Einbau von LEDs im Glas-Glas- oder Folien-Folien-Verbund,
Nachbau von Modulen unterschiedlichster Hersteller, mit oder ohne Rahmung,
Kleinmodule mit geschnittenen Solarzellen für Sonderanwendungen.
OEM-Produktion:
Kundenorientierte und anwenderspezifische Lösungen,
diverse Bauformen und Geometrien realisierbar (Dreieck, Trapeze, Kreise mit und ohne Befestigungslöchern),
Solarlamellen als Verschattung mit integrierten Solarzellen,
Solardachziegel auf speziellen Trägermaterial,
Transparenz ist variabel gestaltbar durch Abstandsänderung der Solarzellen zueinander,
Terrassenüberdachungen und Carport-Lösungen,
solare Fuß- und Radwege mit aktiven Solarzellen,
Gutachten zu Photovoltaikmodulen für Versicherungen.
Zertifikate:
IEC 61215-1: 2016; IEC 61215-2: 2016 (aktuell gemeinsam mit einer Schweizer Firma als Lizenzhalter),
IEC 61730-1: 2016; IEC 61730-2: 2016 (aktuell gemeinsam mit einer Schweizer Firma als Lizenzhalter),
DIN EN ISO 9001:2008 (ist neu abzulegen),
DIN EN ISO 14001 (ist neu abzulegen),
Bauaufsichtliche Zulassung (abZ) des DIBt für Glas-Glas-Module (aktuell nach deutschen Normen); läuft in 2020 aus; derzeit laufen die Vorbereitungen für eine neue Antragstellung
Technische Ausrüstung:
Laminator für Abmessungen ca. 3, 5 m x 2,3 m bei einer max. Gesamtdicke der Laminate von ca. 35 mm,
Laminator für Abmessungen ca. 2,7 m x 1,7 m bei einer max. Gesamtdicke der Laminate von ca. 60 mm,
Stringer für Standard-Solarzellen 125 mm x 125 mm mit drei Busbars; 156,75 mm x 156,75 mm mit zwei Busbars,
Stringer für Standard-Solarzellen 156,75 mm x 156,75 mm mit drei Busbars,
drei Verarbeitungsmaschinen für die Vieldrahttechnologie (Active Wire/Smart Wire/Day4),
Folienschneideinrichtung,
Sonnensimulator für große Abmessungen,
Hochspannungs-Isolierarbeitsplatz,
Elektrolumineszenz Arbeitsplatz in Verbindung mit Infrarotmessung,
zwei Rahmentische.
Die Angestellten des Unternehmens besitzen ein einzigartiges Wissen und Erfahrungen zu den vorgenannten Produktionstechnologien. Flexibilität und Zuverlässigkeit gehören zur Basis ihrer täglichen Arbeit.
Die GES GmbH ist aktuell an zwei Entwicklungsprojekten (Standard BIPV und Design2PV) beim Fraunhofer-ISE in Freiburg mit weiteren Partnerfirmen beteiligt. Schwerpunkte sind fassadenintegrierte Standardlösungen und architektonisch anspruchsvolle Gestaltung von PV-Fassadenelementen.
Verkehrslage:
Die Firma ist verkehrstechnisch gut an die Bundesautobahnen A4 und A9 angebunden, das Werk befindet sich innerhalb Deutschlands sehr zentral (Gera/Korbußen). Für weiterführende Fragen stehen Ihnen die Geschäftsführer Herr Florstedt und Herr Höhne gern zur Verfügung. (HS)
Next generation searched for GES Gebäude-Energiesysteme GmbH
The company GES Gebäude-Energiesysteme GmbH in Korbußen near Gera in Thuringia is looking for a new owner and management. The reason: After almost 30 years of development work, the two managing directors are going to retire. The rock solid company has full order books and highly exciting projects.
GES Gebäude-Energiesysteme GmbH is a solar manufacturer of special quality. Small but powerful: The two founders and managing directors Joachim Höhne and Hans-Uwe Florstedt recognized the demanding niche of special formats for building-integrated photovoltaics (BIPV) at an early stage. The order situation is very good and the projects are exceptional throughout.
The buyers or new managing directors should bring along technical and commercial expertise, combined with a commitment to photovoltaics in all its nuances and applications. If desired, the two founders will accompany the transition for some time with their knowledge and experience.
Know-how:
GES Gebäude-Energiesysteme GmbH offers processing technologies and module construction with crystalline and organic solar cells:
glass-foils, framed and unframed,
Glass-Glass, framed (2 x 2 mm glass) unframed up to (2 x 12 mm),
Digital printing on glass for color design,
Photovoltaic insulating glass,
Organic photovoltaics in glass-glass or foil-foil composites,
Foil film as flexible variants in active-wire technology, solar cells on lightweight materials (development projects),
Solar cells on aluminum material (development projects),
Installation of LEDs in glass-glass or foil-foil composites,
Reproduction of modules from various manufacturers, with or without framing,
Small modules with cut solar cells for special applications.
OEM production:
Customer-oriented and user-specific solutions,
Various designs and geometries can be realized (triangle, trapezoid, circles with and without mounting holes),
Solar slats as shading with integrated solar cells,
Solar roof tiles on special carrier material,
Transparency can be variably designed by changing the distance between the solar cells,
Terrace canopies and carport solutions,
solar footpaths and cycle paths with active solar cells,
Expert opinion on photovoltaic modules for insurance companies.
Certificates:
IEC 61215-1: 2016; IEC 61215-2: 2016 (currently together with a Swiss company as license holder),
IEC 61730-1: 2016; IEC 61730-2: 2016 (currently together with a Swiss company as license holder),
DIN EN ISO 9001:2008 (to be filed again),
DIN EN ISO 14001 (to be filed again),
Building inspection approval (abZ) of the DIBt for glass-glass modules (currently according to German standards); expires in 2020; preparations for a new application are currently underway
Technical equipment:
Laminator for dimensions approx. 3, 5 m x 2.3 m with a max. total thickness of the laminates of approx. 35 mm,
Laminator for dimensions approx. 2.7 m x 1.7 m with a maximum total thickness of the laminates of approx. 60 mm,
Stringer for standard solar cells 125 mm x 125 mm with three busbars; 156.75 mm x 156.75 mm with two busbars
Stringer for standard solar cells 156.75 mm x 156.75 mm with three busbars,
three processing machines for multi-wire technology (Active Wire/Smart Wire/Day4),
Foil cutting device,
Sun simulator for large dimensions,
High voltage insulation workstation,
Electroluminescence workplace in combination with infrared measurement,
two framing tables.
The company’s employees possess unique knowledge and experience in the above mentioned production technologies. Flexibility and reliability are the basis of their daily work.
GES GmbH is currently involved in two development projects (Standard BIPV and Design2PV) at Fraunhofer-ISE in Freiburg with further partner companies. The focus is on façade-integrated standard solutions and architecturally sophisticated design of PV façade elements.
Transport situation:
The company is well connected to the A4 and A9 freeways, the plant is located in a very central location within Germany (Gera/Korbußen). For further questions, the managing directors Mr. Florstedt and Mr. Höhne will be happy to answer them. (HS)
American scientists have developed thermochromic glasses with a semiconductor layer of perovskites. This allows the corresponding windows to shade and at the same time generate solar power.
Scientists of the National Renewable Energy Laboratory have developed thermochromic windows with additional power generation. They sandwiched a thin layer of perovskites between two panes of glass and injected vapor. The vapor triggers a reaction that causes the perovskites to arrange themselves in different shapes. The spectrum ranges from a chain to plates to cubes.
Windows change color
In this way, thermochromic windows not only save on the need for cooling when the sun is high. This is because the basic property of reacting in color to changes in temperature due to high solar radiation is retained. This means that they can continue to be used as sun shading when the irradiation is high. They then become darker, which means that the rooms heat up less. When the solar radiation decreases, they become clear and transparent again, allowing more daylight into the rooms.
Perovskites shade and generate electricity
Since the researchers now use perovskites, a semiconductor material that reacts to heating with a change in color, they can simultaneously use solar radiation to produce electricity – without any solar technology being visible. In doing so, the perovskites use the solar energy that they retain to generate electricity. This means that the higher the irradiation, the darker the windows become and the more electricity they produce at the same time. On cloudy days, on the other hand, the power generation is lower because the sunlight that is then still available is needed to enlighten the rooms.
The shape determines the color
The advantage of the technology: the perovskites can be color-matched to customer requirements. This depends on their arrangement within the windows. A cube-shaped arrangement produces a different color than, for example, a chain-shaped arrangement. This changes with the humidity to which the perovskites are exposed. This in turn changes with the temperature of the injected steam. If the temperature drops, the humidity inside the glass plates also drops and the perovskites return to their transparent initial state.
Windows become active earlier
In addition, the thermochromic windows are already active at lower temperatures. For example, the thermochromic solar windows used up to now could only change between transparent and a reddish brown color tone. They needed glass temperatures between 150 and 175 degrees Fahrenheit (between 65 and almost 80 degrees Celsius). Now more colors are possible and the color change starts already at temperatures between 95 and 115 degrees Fahrenheit (between 35 and 46 degrees Celsius). „This increases design flexibility for improving energy efficiency as well as control over building aesthetics that is highly desirable for both architects and end users“, the NREL researchers emphasize. In addition, the researchers have reduced the time needed for color changes from three minutes to about seven seconds.
Commercialization planned
As a next step, NREL researchers plan to commercialize the technology. „A prototype window using the technology could be developed within a year“, says Bryan Rosales , who was a major contributor to the development. In addition, the windows will be further improved and researched. For example, the scientists still want to find out how often the perovskites can be converted into the power-generating form and back again into the transparent state. Furthermore, increasing the efficiency is still on the list of research topics. (su)
Armor achieves 26 percent with organic solar films
The manufacturer of organic photovoltaics (OPV) has set a new record for laboratory efficiency under low light conditions with new solar films. The OPV cells are optimized for indoor applications.
The French manufacturer Armor has reached an efficiency of 26 percent with an organic solar cell – even under low-light conditions. According to the company, this is a new record. The French achieved the high efficiency by using new photoactive materials, which they acquired from Raynergy Tek in Taiwan. The company in Hsinchu, about 50 kilometers southeast of Taipei, specializes in the production of organic semiconductor material that has been specially developed for high photosensitivity.
Developed for indoor applications
This makes organic solar films produced with this material particularly suitable for indoor applications such as semi-transparent lamella curtains. They are particularly good at using artificial light to produce electricity and can thus become an energy source for electrical devices. For example, Armor Solar Power Films has installed a sensor system at its German production site in Kitzingen, Lower Franconia, which is supplied with electricity from the organic solar films. The films themselves act as sensors. They record the ambient temperature and humidity of the production environment in real time, which in turn is crucial for ensuring production quality.
200 Lux is sufficient
This application requires solar films that reliably produce electricity even in low-light environments from 200 lux upwards. In the case of the solar foils with the semiconductor material from Taiwan, even during the day, just the room lighting is sufficient to generate and store enough energy to supply the sensors with sufficient power during the day and at night.
Solar foils control building operation
In addition, the organic solar film can also be used as a data receiver. For this purpose, the data is transmitted by light via LiFi applications. These are wireless transfer options that – unlike WLAN or other radio technologies – transport the data over the light spectrum. Thus, the solar foils can also be used as sensors in buildings. This is because they are able to monitor air quality, temperature, noise levels or the general condition of a building and control heating, ventilation, blinds or windows accordingly. (su)
Hybrid storage concept for all-electric building supply
An apartment building in Frauental in Austria was equipped with a new energy concept during the renovation. Now the heat is supplied completely without piping, just electrically.
The Austrian photovoltaic project developer Paul Langmann has equipped an apartment building with a solar façade and a roof-mounted system. However, the solar power is not used for the residents‘ electrical devices, but for the heat supply. For this purpose, a hot water tank was installed in each of the eight apartments and in the commercial unit on the first floor. A My PV heating rod keeps the water at the specified temperature and uses mainly electricity from the façade and roof. This provides the apartments with hot water for domestic use.
Space heating with infrared panels
Infrared panels installed in the rooms provide the heating. They also primarily use the solar power produced on site. Only if this is not sufficient, the infrared panels and the heating elements are powered from an additionally installed storage battery. This stores the solar energy temporarily, which is not used directly by the heat generators. Only if it is no longer able to provide sufficient energy for the heat generators, they are supplied from the grid.
No hot water pipes installed
With the energy concept, the house owner is pursuing several goals at once. On the one hand, he has saved a lot of installation time and money. Because there are no hot water pipes laid in the building. This also reduces the amount of energy required for heat supply, as there are hardly any losses. Instead, the heat supply is realized exclusively with power cables.
Minimize electricity purchases from suppliers
On the other hand Langmann wants to receive as little as possible energy for the space heating and warm water supply from the supplier. This was also achieved, as the results show already after the first year of operation. You can read what these results look like in the entire dossier, which you can find in the Solar Age project database. Enter MyPV as the company and Frauental as place in the search mask. As a result you will find the corresponding project. Here you can also go directly to the project, if you have previously registered and logged in as Club Member. (su)
Brussels wants to decarbonize existing buildings faster
The European Commission has presented a concept for accelerating the energy-efficient renovation of existing buildings in the EU.
The European Commission has presented a strategy to speed up the renovation of buildings – and thus also their energy-efficient modernisation – in Europe. Up to now, there have been specifications as to what energy standards new buildings in the EU must meet. However, a huge stock of buildings still produces abundant greenhouse gas emissions. That is why the Commission wants to at least double the rate of refurbishment in the next few years, thereby ensuring greater energy and resource efficiency. Currently, this rate is one percent per year. The goal: By 2030, 35 million buildings could be renovated and up to 160,000 additional green jobs created in the construction industry.
Buildings must become more efficient
Three approaches are at the focus: decarbonization of heating and cooling generation, measures for buildings with the lowest energy efficiency, and the renovation of public buildings such as schools, hospitals or administrative buildings. To do this, the existing barriers are to be removed and funding supported.
To this end, the Commission announces, among other things, stricter regulations, standards and information on the energy performance of buildings. The intention is to introduce binding minimum standards for the energy performance of existing buildings, updated rules for energy performance certificates and a possible extension of renovation requirements for the public sector. With this, Brussels wants to make renovation more attractive in the public and private sectors.
Support financing
Within the framework of the Green Deal, Brussels also wants to support the member states financially in the funding of clean-up strategies. This includes not only easily accessible subsidies. Rather, the catalog of possibilities that the Commission wants to create ranges from technical support for national and local authorities to training and qualification measures. In addition, the market for sustainable construction products and services is to be expanded. For this purpose, Brussels wants to further develop the eco-design framework. The aim is to bring more efficient, building-oriented products onto the market and promote their use.
Minimum requirements for the use of renewables
Another approach is the revision of the guidelines for heating and cooling from renewable sources. This could be done as part of the revision of the Renewable Energies Directive scheduled for June 2021. Then even a minimum level of energy from renewable sources in buildings could be introduced. The Commission will also examine how EU budgetary resources could be used, in addition to the revenues from the EU ETS, to finance national energy efficiency and energy saving programmes tailored to lower income groups.
Develop concepts for urban districts
However, the wave of renovation is not only about the existing building stock, but also about a comprehensive change in the cities and the structural design of the environment. For this reason, district-specific concepts for local communities are to be developed. This could integrate solutions based on renewable energies and digitalization and create districts with a balanced energy balance, where consumers become prosumers who sell energy to the grid. The strategy also includes a 100-district initiative for affordable housing.
Daring Cities conference shows solutions for the city of the future
What can and must the city of the future look like? What can architecture and urban planning do to combat the climate crisis? These are questions that will be answered at the Daring Cities conference.
The city of the future with its architecture and planning is the focus of the virtual climate conference Daring Cities 2020, organized by ICLEI – Local Governments for Sustainability. ICLEI is an international network of more than 1,750 local and regional governments committed to sustainable urban development.
From urban climate to solar architecture
The topics of the conference are as various as the challenges that cities have to deal with in terms of climate change. The spectrum ranges from improving the urban climate through changes in construction methods and architecture, to greening buildings and the use of sustainable building materials, the integration of alternative mobility concepts, the energy revolution in the boiler room and the sustainable operation of buildings. The latter aims, among other things, at concepts for on-site energy generation by activating the building envelope.
Diverse program
The conference runs until 28 October 2020 and the program is extensive. „In view of the postponement of the UN Climate Change Conference in Glasgow, the free event offers a valuable opportunity for international exchange and to benefit from global climate expertise,“ emphasizes Ursula Heinen-Esser, Environment Minister of North Rhine-Westphalia. Along with the city of Bonn, the German federal state is one of the institutional supporters of the conference. „Over a period of three weeks, the diverse program includes numerous online sessions, informative workshops and opportunities for personal networking,“ explains the Environment Minister. „It is important to learn from each other to find the best answers to the climate crisis.“
The complete program of presentations and workshops in different languages can be found on the website of Daring Cities. Participation is free of charge. (su)
The Dresden-based module manufacturer Solarwatt has launched a panel with building authority approval. My PV can control the electric heating elements and power controllers via a cloud. Alpha Innotec has an extremely quiet heat pump in its portfolio.
Module with approval
With Vision 60M construct, Solarwatt has a module with general building authority approval in its portfolio. This means that it can be used as a component without individual case certification for overhead glazing such as carports, roofing of parking lots and terraces, industrial halls and sports facilities as well as for façade integration. If required, it can even replace the entire roof cladding.
The module can also be used to make already covered surfaces usable for photovoltaics where classic on-roof photovoltaics would be ruled out. The spectrum ranges from parking lots, bicycle paths and streets to gas stations and other public spaces. The modules provide shade, produce electricity and protect against the weather. The advantage: Due to the transparency of ten percent, a space illuminated by daylight is created under the modules.
Cloud for heating and hot water
The Austrian provider My PV has developed a cloud and corresponding Cloud-Connect-Units. This allows housing companies and landlords to keep an eye on the electrical heating elements and heating control systems. With the Connect-Unit, the heat supply of several buildings can also be interconnected. In addition, the cloud allows parameters to be set remotely. Then no technician has to drive to the building and adjust minimum temperatures or different times.
Whisper-quiet heat pump
With the Alira LWAV+, Alpha Innotec has developed a heat pump that is suitable for dense residential areas. This is because the manufacturer has consistently ensured that the device operates as quietly as possible. Even under full load, it can hardly be heard at a distance of six meters. A silent mode reduces the heat power during the night, but additionally lowers the noise level.
Further details about the products presented here can be found in the Solar Age product database. After cost-free subscription as Club Memeber you will get access to all information of the architecture portal.
German Sustainability Award: Organic solar films for construction elements are in the final round
The approach of producing organic solar films to activate building materials for façades has a promising chance of winning one of this year's German Sustainability Awards. What convinced the jury?
The manufacturer of organic solar films Armor has reached the finals of this year’s German Sustainability Award. The jury was convinced by the company’s approach of using the thin and flexible organic solar modules to activate existing building elements for the building envelope, thereby giving them an additional function. The advantage of the films is that they can be completely adapted to the aesthetic and planning ideas of the architects. Not only different colors, shapes or transparency are possible. Solar technology can completely disappear from the viewer’s perception with the foils.
OPV developed to marketability
Armor has developed this approach to industrial maturity and is already producing the film in mass production. This makes the company one of the pioneers of this technology alongside its Dresden-based competitor Heliatek. However, Armor still has to assert itself against strong competition in the German Sustainability Award for Companies category. The other finalists include established companies such as Bosch, the thin-film solar module manufacturer First Solar, the green electricity provider Naturstrom and the pump manufacturer Wilo.
The competition is strong
In addition, the non-profit search engine Ecosia, the eco-bank GLS, the marketer and refiner of biochar Novo Carbon and the wind and solar park operator Ørsted Wind Power Germany also reached the finals. „If you look at the very strong field of competitors, it is already a great success to enter the final round,“ said a happy Ralph Pätzold, Managing Director of the German business unit of Armor Solar Power Films. „We are more than pleased about the recognition as one of the companies considered relevant for shaping the future. We are proud that our OPV vision has already received such recognition from the award’s jury. Yet the revolution has only just begun,“ he promises. (su)
Freiburg researchers have set a new record for the efficiency of organic solar films. Now this must be raised to the module level in order to form a building product with efficient power generation.
Together with their colleagues from the Materials Research Center of the University of Freiburg (FMF), the researchers at Fraunhofer ISE have increased the efficiency of organic solar films to 14.9 percent. According to their own statements, this is a new record value. The previous record is 12.6 percent.
Larger cell produced
However, the record was achieved on just a laboratory cell. Thus, the value remains comparable to other efficiencies for organic photovoltaics (OPV) that have been reached so far. However, the challenge remains to transfer the efficiency evenly to larger surfaces on an industrial scale. This is why the researchers have based their work on a cell layout that they developed some time ago. „When we now achieved high efficiencies with a commercial absorber material on small laboratory cells, we wanted to know whether this could also be realized on the larger surface of 1.1 square centimeters,“ explains Birger Zimmermann, team leader for production technology of organic solar cells at Fraunhofer ISE. „We were very satisfied with the results, as we did not have to accept any losses“.
Important step towards industrial production
This is especially necessary for up-scaling and transfer to the industrial production process. After all, most of the laboratory records are lost on this way, so that the actual solar films only achieve a part of this efficiency. With the current record, however, the researchers at Fraunhofer ISE have taken an important step towards the industrial production of efficient organic solar modules. „And we also have a few ideas on how to further increase the efficiency,“ emphasizes Uli Würfel, head of the Organic and Perovskite Photovoltaics department at Fraunhofer ISE and group leader at the FMF. „So the next weeks and months will be very exciting,“ he promises.
Developing a building product
The Freiburg researchers also have their sights set on the transfer to mass production. This is the only way to create building materials that architects can use to design and plan. Organic photovoltaics has the advantage that it makes the technology of power generation invisible, can be semi-transparent over the entire surface and printed on foils, fully satisfying the demands of architects of freedom in terms of shape, color and size. „Together with industrial partners, we will continue to bring organic photovoltaics to market maturity,“ says Andreas Bett, head of Fraunhofer ISE. „In the long term, this technology, with its flexible application possibilities, is an important building block for the urgently needed expansion of photovoltaics as the most important element of energy generation in a sustainable system“. (su)
Solarwatt bringt Modul mit bauaufsichtlicher Zulassung auf den Markt
Solarwatt hat ein ästhetisch ansprechendes Modul in Standardmaßen entwickelt und eine allgemeine bauaufsichtliche Zulassung (abZ) dafür bekommen. Damit wird die Nutzung als Überkopfverglasung und die Fassadenintegration einfacher.
Der Dresdner Modulhersteller Solarwatt hat ein neues Paneel entwickelt und dafür eine allgemeine bauaufsichtliche Zulassung (abZ) bekommen. Mit dem 60M Construct hat das Unternehmen jetzt ein Modul in Standardgröße im Portfolio, das Architekten und Planer deutschlandweit allein als geregeltes Bauprodukt uneingeschränkt im privaten und öffentlichen Bereich einsetzen können. Damit entfällt der aufwändige Weg, projektspezifisch eine separate Bauzulassung einzuholen oder zusätzliche Sicherungsmaßnahmen wie Stahlnetze einzusetzen.
Zehn Prozent Transparenz
Bei Bedarf kann das neue Glas-Glas-Modul die Dachhaut komplett ersetzen. Das spart sowohl Material als auch Kosten bei der Installation. Zusätzlich dazu erzeugen die Module aufgrund der Lichttransparenz von zehn Prozent spannende Licht-Schatten-Effekte ohne dass der Raum unter dem Solardach vollständige abgedunkelt wird. Das erreichen die Dresdner mit einer transparenten Einkapselung der Solarzellen, die im Standardabstand zueinander zwischen die beiden Modulgläser laminiert werden. Auf diese Weise kann ein Teil des Sonnenlichts durch das Modul in den dahinter liegenden Raum dringen. Solarwatt hat als Anwendungsmöglichkeiten sowohl die Überkopfverglasung als auch die Fassadenintegration im Blick. Das Spektrum reicht vom Carport über großflächige Parkplatzüberdachungen, Terrassendächer, Überdachungen von Industriehallen bis hin zu Veranda- und zur Sportstättenüberdachungen.
Schwarzer Rahmen für ästhetische Ansprüche
Um die ästhetischen Ansprüche zu erfüllen, liefert Solarwatt das Modul mit einem schwarz eloxierten Rahmen, die mit den ebenfalls schwarzen monokristallinen Solarzellen gut harmonieren. Die seitlich gesetzte Anschlussdose sorgt dafür, dass die Verkabelung problemlos in der Verkleidung verschwinden kann. Auf diese Weise hat Solarwatt ein Bauprodukt entwickelt, das zusätzlich Strom erzeugt– nach Angaben des Herstellers unter guten Bedingungen bis zu 950 Kilowattstunden pro Jahr und pro Kilowatt installierter Leistung. (su)
Solarwatt launches module with building authority approval
Solarwatt has developed an aesthetically pleasing module in standard dimensions and received a general building approval (abZ) for it. This makes it easier to use it as overhead glazing and to integrate it into the façade.
The Dresden-based module manufacturer Solarwatt has developed a new panel and received a general building authority approval (abZ) for it. With the 60M Construct the company now has a module in standard size in its portfolio, which architects and planners can use alone as a regulated building product without restriction in the private and public sector. This eliminates the costly and time-consuming process of obtaining a separate building permit for a specific project or using additional safety measures such as steel nets.
Transparency of 10 percent
If necessary, the new glass-glass module can completely replace the roof cladding. This saves both material and costs during installation. In addition, the modules create exciting light-shadow effects due to their light transparency of ten percent without completely darkening the space under the solar roof. The Dresden-based company achieves this with a transparent encapsulation of the solar cells, which are laminated between the two module glasses at a standard distance from each other. Solarwatt has both overhead glazing and facade integration in mind as possible applications. The spectrum ranges from carports to large-area parking lot roofs, terrace roofs, roofs of industrial halls to veranda and sports facility roofs.
Black frame for aesthetic demands
To meet the aesthetic requirements, Solarwatt supplies the module with a black anodized frame, which harmonizes well with the likewise black monocrystalline solar cells. The side-set junction box ensures that the cabling can easily disappear into the cladding. In this way, Solarwatt has developed a building product that generates additional electricity – according to the manufacturer, under good conditions up to 950 kilowatt hours per year and per kilowatt installed power.
In Baden-Württemberg a consortium has joined forces to develop guidelines for the implementation of BIPV projects. The first steps have already been taken.
Supported by the Ministry of the Environment in Stuttgart, the Baden-Württemberg Chamber of Architects, together with various research institutions, has launched an initiative to help building-integrated photovoltaics further out of its niche. The cooperation partners include the Center for Solar Energy and Hydrogen Research (ZSW), the Fraunhofer ISE and the University of Applied Sciences for Engineering, Economics and Design in Constance.
Information needs to arrive
The basis is a discussion between architects, providers of solar technology, representatives of the construction industry and research institutes. Here, the project participants gained an overview of the practical difficulties encountered in the implementation of BIPV projects. Among other things, they identified information deficits. But not only the architects lack the knowledge about the existing products and framework conditions. Manufacturers also struggle to provide easily accessible information.
Every building becomes a pilot project
Added to this are the aesthetic reservations of the architects and the excessive complexity of the legal framework. In addition, the investment costs are still the focus of the clients‘ attention, while the operating costs are neglected.“All this leads to the fact that every new BIPV project becomes a pilot project“, Thomas Stark from the HTWK describes the situation when presenting the initiative at this year’s Symposium Solar Building of Swissolar. „The goal of the initiative is to bring more routine into the implementation of the projects.“
„All this leads to the fact that every new BIPV project becomes a pilot project“, Thomas Stark from the HTWK describes the situation when presenting the initiative at this year’s Symposium Solar Building of Swissolar. „The goal of the initiative is to bring more routine into the implementation of the projects“.
Summing up the status of information
In order to resolve this, the project participants will develop an up-to-date guide for BIPV. This is to summarize the current state of information and be published in the spring of the coming year. At the same time they will conduct interviews with various architects and accompany several pilot projects. The aim here is to collect information and make the knowledge systematically available to architects.
Creating the BIPV directive
From this and from the guide they then develop recommendations for a future BIPV guideline. This should serve as a planning basis for an extended solar obligation of the state. These should be ready by the end of 2022. „The idea behind this is to standardize as much as possible and to develop templates to simplify the very complex process of BIPV,“ says Stark.“This should also lead to adjustments of regulations or perhaps even the abolition of regulations that impede the BIPV“. The initiative is flanked by an analysis of the potential of solar façades in the country and the development of new BIPV building products. (su)
Apartment building in Vienna is heated with solar power
A photovoltaic system supports the district heating supply of a new apartment building in Vienna. The excess solar electricity is completely used for the operation of electric heating rods. This is ensured by twelve power controllers in the basement of the property.
In Vienna, a new apartment building with an electrical heating support system has been built. The electricity for this is supplied by a photovoltaic system on the roof. In addition, twelve AC Thor power controllers from the Austrian manufacturer My PV are installed in the basement of the building. Each of them controls one electric heating element continuously. Each of these electrical heating elements can take up a maximum of three kilowatts of power.
The photovoltaic system on the roof with an power output of 47 kilowatts primarily covers the electricity consumption in the building. However, if it produces more electricity than the tenants need at the same time, the power regulators in the basement ensure that every excess kilowatt hour is stored – in the form of heat. Because then they start the electric heating elements, which are screwed into a large heat storage tank. An energy management system ensures that the entire solar power from the system on the building is used for the infinitely variable hot water supply for the in-house hot water station.
You can read about the advantages of such a solution in the library of the Solar Age architecture portal. https://www.solarage.eu/public-lobby/library/
Less material – lower construction costs
For My PV it is a real flagship project. For it is the first time that a decentralized hot water production based purely on solar power supports a district heating network of this magnitude. „The project, implemented together with the company Kelag Energie und Wärme, will set a precedent,“ says Gerhard Rimpler, Managing Director of My PV. „It is a great success for the entire sector coupling, as the falling price of solar modules is now making further power-to-heat applications economically viable“.
He emphasizes the advantages of such a solution. This is because, compared to solar thermal energy, which has so far been used as a solar support for district heating supply in apartment buildings, solar-electric heating technology is much easier to install and operate. In addition, the consumption of materials is reduced and thus also the construction costs. This is because cabling the entire system requires 90 percent less copper than connecting a solar thermal system via copper pipes.
No more new buildings without photovoltaics
Also the use of heat pumps for the support of district heating grids is not always possible, since they cannot reach the high temperatures in the grids and are not infinitely adjustable in combination with solar electricity, stresses Rimpler.
Unregulated heating elements in turn fail in comparison to the screw-in heating elements and the power controller AC Thor due to the missing linear power control, which is necessary for an optimal energy use in the district heating grid. „Thanks to the exact power control of several smaller heat generators, however, it is possible to use the surpluses of decentralized photovoltaic systems to generate heat even in larger systems,“ says Rimpler. „Thus, 100 percent of the solar energy in the new building in Vienna is used locally as electricity and heat“. This ultimately benefits the public grid, which no longer has to absorb the surpluses from the solar system. Rimpler therefore calls for photovoltaics to become an integral part of the construction of new buildings. (su)
A detailed dossier, which you can find in the Solar Age project database, shows you how the solution is designed and structured. After registering as a Club Member, you can use the entire content of Solar Age free of charge.
Advanced Building Skins presents the state of the BIPV
This year's Conference on Advanced Builidiung Skins will take place on October 26 and 27. The second day of the conference will focus on the latest developments in the integration of photovoltaics into the building envelope.
On October 26 and 27, architects, engineers, scientists and representatives of the construction industry will present new projects and developments in building façade design at the Conference on Advanced Building Skins. On the second day of the conference, the program also includes solar façades. Speakers from the industry will show the latest products for the construction of solar façades and roofs.
In a second round of presentations, scientists will highlight the latest findings on the economic efficiency of solar façades, among other things. Here, participants will also learn about the new possibilities for integrating photovoltaics into buildings that developers are currently creating. The complete program can be found on the Advanced Building Skins website.
Ten percent discount until September 30
As in previous years, the conference will take place in the Kursaal of the Swiss capital Berne. „Despite the current difficult situation, we have succeeded in attracting over 50 well-known speakers to this year’s conference,“ says organizer Andreas Karweger. Participants who register by September 30 will receive a discount of ten percent of the attendance fee. This also includes the conference documentation with the speakers‘ manuscripts.
Presentations will be broadcast via internet
If the conference has to be postponed due to possible epidemic-hygienic restrictions or registered participants are not allowed to travel, they will receive a credit for the event in the following year. In addition, all Advanced Building Skins 2020 presentations will also be broadcast live on the Internet. They will be available online for one year. The registration fee is reduced if a participant only wants to use the webinar offer. They must indicate this accordingly when registering on the Advanced Building Skin website. (su)
Housing association builds all-electric solar apartment buildings
In Lübben in eastern Germany, the housing association is building solar-powered apartment buildings with a new energy concept. It is based on as less technics as possible and works without hydraulic heating.
Much independence with less technique – with this aim Timo Leukefeld, professor for solar energy at the Bergakademie in Freiberg, Saxony, has developed a new building concept. „We need a simple, solid and low-maintenance technology that saves the residents money and reduces CO2 to a minimum,“ Leukefeld outlines the approach. „The key to this is a high degree of autonomy through solar energy for heat, electricity and mobility“.
Roof and façade are made of solar modules
The heart of the concept are steep pitched roofs covered with solar modules. In addition, the upper part of the façade will also be made of solar modules. In this way, enough electricity will be produced not only to supply most of the electrical devices with energy, but also to heat the building. For this purpose, Leukefeld has replaced the previous hydraulic, water-based heating system with infrared panels. The hot water is prepared with an electric boiler, which also runs on solar power. When all the devices in the building are supplied with electricity, the surplus is either stored temporarily in a storage system or used to charge electric vehicles.
Large storage device provides for much independence
The concept is now being translated into reality for the first time. This is because the housing association in Lübben (LWG), a small town in the Spreewald region of eastern Germany, has begun building such low-technology and energy independent apartment buildings. Every one of the two buildings, each with seven residential units, will be equipped with a solar power output of 37.7 kilowatts. In addition, there will be a storage unit that can carry 73 kilowatt hours of solar power. If the solar power is not sufficient, it will be purchased from the grid. The housing association assumes, however, that the power purchase from the grid is minimal. On the contrary: „According to calculations, there will be so much solar power left that 50,000 kilometers can be driven electrically with it,“ explains Frank Freyer, CEO of LWG.
Tenants get energy flat rate
The tenants of the houses can use the whole electricity free of charge. Because due to the energy concept and the special architecture they get an energy flat rate and thus pay a general rent. Finally the costs for the solar electricity lie between eight and ten cent per kilowatt-hour and the power consumption from the grid is easy to calculate and anyway very low. The flat-rate rent will include not only the net cold rent, but also the costs for energy for heating, hot water, household electricity and proportional community electricity. This is also an advantage for the landlords.Because there is no need for the effort of measuring the heating energy.
Electricity becomes dominant energy source
In addition, the expensive concept for measuring electricity in the building is eliminated. „We have to move away from complex solutions and precise accounting and towards simple and robust technology,“ Leukefeld appeals. „Electricity will be the predominant energy source and will enable billing via a flat rate for living, mobility and energy from our self-generated sources,“ he is certain. (su)
Dossier über solare Gründächer steht zum Download bereit
Ungenutzte Dachflächen sind in dicht bebauten Innenstädten nicht mehr zeitgemäß. Eine Dachbegrünung kombiniert mit einer Solaranlage eröffnet viele Möglichkeiten. Das Dossier Flach- und Gründach zeigt, was möglich ist.
Die Konkurrenz auf dem städtischen Flachdach ist hart: Vom Freiluftwohnbereich bis hin zu Biotopen oder als Lieferant von Solarstrom. Es geht auch um Erholungsflächen und Regenwasser, das einen Zwischenspeicher finden soll. Die Solaranlage hingegen soll möglichst viel Ertrag bringen. Doch die Effizienz ist von verschiedenen Faktoren abhängig. Zum einen muss die Anlage optimal zur Sonne ausgerichtet sein, um die Sonnenstrahlen bestmöglich einzufangen. Zum anderen sollen die Systeme schnell und kostengünstig zu montieren sein.
Eine Kühlung der Solarpaneele durch Grünpflanzen kann die Erträge verbessern. Das sind Herausforderungen, denen sich Planer und Solarteure neu stellen müssen. Alles Wissenswerte finden Sie in dem kostenlosen und exklusiven PDF-Dossier auf der Webseite der Fachzeitschrift photovoltaik.
The American company Ubiqd has developed a fully transparent solar window. The efficiency is 3.6 percent. The manufacturer uses a very special technology.
The American manufacturer of luminescent glass panels Ubiqd from Los Alamos, New Mexico, has developed a completely transparent solar window with an efficiency of 3.6 percent. The technology of the Americans is not based on laminating a semiconductor material between two glass panes. Instead, the company is using its expertise gained in the development of luminescent glass.
Nanoparticles amplify sunlight
This technology is based on the fact that extremely small nanoparticles – so-called quantum dots, which have been laminated between the glass panes – amplify the incident sunlight and thus allow more light to enter the rooms. This technology is mainly used in greenhouses.
Solar cells in the frame
The solar windows are based on the same technology. However, the quantum dots do not transmit the amplified sunlight into the building’s inside, but rather onto the frame of the window. This is where the solar cells are located, which produce electricity from the deflected sunlight. In order to keep the window transparent, only a small portion of the sunlight is redirected.
Further development is on the agenda
In this way, however, no wires or solar cells disturb the view. By combining the quantum dots with different dyes, different colors of the windows are also possible. The company is now working on further developing this LSC technology so that it can be used more rapidly in the next generation of energy-efficient buildings. The company has described the current development and further possibilities in a study that has just been published in The Journal of ACS Applied Energy Materials. (su)
Climate neutral polar station fully electrically heated
The Belgian Princess Elisabeth Station in Antarctica is operated climate-neutrally. The entire energy supply is provided by solar and wind generators. To ensure fully electric operation, power controllers manage the heat supply.
The Belgian polar station Princess Elisabeth has been the accommodation for researchers for many years. But what makes it unique is its energy concept. It is the only polar station so far that is completely powered by renewable energy. The heart of the station during the Antarctic summer months is a solar façade which, together with other modules – mounted on the roof and next to the station – provides sufficient energy. They are supported by several small wind generators. These in turn provide the energy supply in winter.
Power controller installed
They not only provide electricity for the scientific instruments and other electrical devices, but also the energy for heating. This is because new AC Thor power controllers from My PV were installed in spring 2020. This means that the surplus energy coming from the actually oversized systems can be used optimally. Because the devices are infinitely variable and store every kilowatt hour of excess green electricity in the form of heat.
Storing excess electricity as heat
On the one hand, they do this via heating rods that warm up the water in a large buffer tank. In this way they manage the entire hot water supply. Another power controller uses the surplus solar and wind power to heat the newly constructed garage building by means of infrared panels so that the mechanics can work there.
A detailed description of the energy concept of the polar station can be found in the Solar Age project database. After registration you can use the complete information material from Solar Age free of charge. (su)
DGNB zeigt nachhaltige Lösungen für Gebäude der Zukunft
Unter dem Motto Act On Climate zeigt die Deutsche Gesellschaft für Nachhaltiges Bauen neue Ansätze Lösungen für klimafreundliche Gebäude. Der diesjährige Tag der Nachhaltigkeit findet als Onlinestream statt.
Die Deutsche Gesellschaft für Nachhaltiges Bauen (DGNB) organisiert zum Start der World Green Building Week unter dem Motto Act On Climate am 21. September 2020 den Tag der Nachhaltigkeit im kostenlosen Onlinestream. Hier können sich die Teilnehmer unter anderem über die neuen Ansätze, Lösungen und Innovationen rund um das Thema klimapositive Gebäude informieren. „Das diesjährige Motto der World Green Building Week passt perfekt zu zahlreichen Aktivitäten, die wir bei der DGNB in den vergangenen Monaten angestoßen haben“, sagt Christine Lemaitre, Geschäftsführender Vorstand der DGNB. „Das gibt uns die tolle Gelegenheit, eine breite Öffentlichkeit zu diesen wichtigen Schritten auf dem Weg in eine klimapositive gebaute Umwelt zu informieren, sie zu inspirieren und Mut zu machen, selbst aktiv zu werden.“
Umfangreiches Programm
Die Veranstaltung findet – nach der Mitgliederversammlung am Vormittag – in zwei Blöcken statt. So startet um 14:30 Uhr die Endausscheidung des Nachhaltigkeitswettbewerbs der DGNB. Hier stellen die Finalisten des Wettbewerbs in den Kategorien Innovation, Startup und Forschung ihre Lösungen vorstellen. Bis zum 13 September 2020 können alle Interessenten noch auf dem Blog der DGNB die Finalisten bewerten und über die besten Lösungen abstimmen.
Ab 16:30 Uhr folgt ein Impulsvortrag von David Nelles, Autor des Klimawandelbuches „Kleine Gase – große Wirkung“. Es folgt die Präsentation von frisch von der DGNB zertifizierter Gebäude. Dazu gehört auch ein Neubauprojekt mit dem bisher besten bei einer Zertifizierung der DGNB erreichten Ergebnis.
Zum Abschluss des Tages wird die von der DGNB ins Leben gerufene Initiative „Klimapositive Stadt“ vorgestellt und offiziell gestartet. Hierzu gibt es eine Gesprächsrunde mit Vertretern verschiedener Kommunen, die als Erstunterzeichner mit dabei sind.
Interessenten können sich noch auf der Webseite der DGNB zum Tag der Nachhaltigkeit registrieren. Dort finden Sie auch weitere Informationen über den Ablauf der Veranstaltung. (su)
Solares Bauen: Spiez Solar zeigt die Möglichkeiten
Zum Tag der offenen Tür am 19. September laden Spiez Solar und das Projekt Wohnenplus zur Besichtigung eines solaren Mehrfamilienhauses in Steffisburg bei Thun ein. Das Gebäude ist ein Beispiel gelungener solarer Architektur in Kombination mit einem modernen Energiekonzept.
Welche Möglichkeiten für Architekten, Bauherren und Wohnungsunternehmen mit der solaren Architektur öffnen, zeigt die Genossenschaft Spiez Solar zusammen mit der Hausgemeinschaft Wohnenplus in Steffisburg. Im Quartier Stuckimatte in der kleinen Stadt nördlich von Thun hat die Genossenschaft ein Mehrfamiliengebäude errichtet, das mehr Energie selbst produziert als die Bewohner verbrauchen.
Solaranlagen liefern die Energie
Das gelingt zum einen durch eine solarthermische Anlage. Diese versorgt das Gebäude mit Wärme. Dabei wird überschüssige Sonnenenergie im Sommer in einem riesigen Pufferspeicher zwischengelagert, der im Zentrum des rechteckigen Baukörpers steht und um den sich der Treppenaufgang windet.
Dazu kommen noch Photovoltaikanlagen, die neben den einzelnen elektrischen Geräten im Gebäude auch eine Wärmepumpe im Keller antreibt. Die Module stehen dabei nicht nur auf dem Flachdach des Hauses. Vielmehr haben die Architekten auch die Süd-, Ost- und Westfassade des dreigeschossigen Gebäudes teilweise als vorgehängte hinterlüftete Solarfassade ausgeführt.
Intelligenz im Gebäude
Zum Energiekonzept gehören aber auch intelligente Elektrogeräte, die Strom dann verbrauchen, wenn er von den Solarmodulen auf dem Dach und an der Fassade geliefert wird. Dazu stellen die Bewohner ein, wann beispielsweise die Waschmaschine oder der Geschirrspüler jeweils mit ihrem Programm fertig sein sollen. Steht genügend Sonnenstrom zur Verfügung, schalten sie sich ein, liefern die Module nicht genügend Energie, pausieren sie ihr Programm. Nur wenn generell zu wenig Solarstrom zur Verfügung steht, nutzen sie Strom aus dem Netz. Dabei werden aber auch Wetterprognosen in die gesamte Steuerung mit einbezogen.
Informatives Rahmenprogramm
Dieses architektonisch und energetische Konzept können sich interessierte Architekten, Planer und Bauherren im Rahmen eines Tages der offenen Tür anschauen. Zusätzlich werden die Architekten und Planer des Gebäudes in Vorträgen das Konzept genau erklären. Das gesamte Programm finden Sie auf der Internetseite von Stuckimatte Wohnenplus. Das Wohnprojekt öffnet seine Türen am 19. September 2020 zwischen 10 und 16 Uhr. Interessenten müssen sich vorher anmelden, da die Plätze – auch aufgrund der seuchenhygiensichen Vorgaben – begrenzt sind. (su)
Centrotec acquires a majority shareholding of CS Wismar
Centrotec, the developer of building technology, has acquired 80 percent of Sonnenstromfabrik in Wismar together with Pari Group. The company expects a growing demand for solar systems in the building sector.
Centrotec, a developer of energy-efficient building technology based in Brilon in the Sauerland region, has acquired the Swiss Pari Group. In addition to an extensive real estate portfolio and an associated offer of real estate services, Pari Group also holds 80 percent of the shares of Sonnenstromfabrik. The module manufacturer in Wismar is of particular interest to the company because of its expertise in the production and development of double glass modules, which are used in buildings with a high proportion of self-consumption and in solar façades. Sonnenstromfabrik also produces modules for the Solrif in-roof system by Ernst Schweizer.
Offering complete systems
Centrotec expects higher demand for solar systems on buildings in the future. The company attributes this on the one hand to the increasing decarbonization in the area of heat generation and on the other hand to the steadily decreasing prices for battery storage. The main focus here is on the installation of complete systems for the generation and storage of electricity and heat. Pari Group’s real estate includes the production facility of Sonnenstromfabrik in Wismar. For the customers or the product portfolio of CS Wismar nothing will change with the acquisition of the majority by Centrotec. (su)
Indachphotovoltaik: Ernst Schweizer und Wagner Solar kooperieren
Der Systemanbieter Wagner Solar vertreibt in Zukunft das Indachsystem Solrif von Ernst Schweizer. Zusammen mit den Modulen von CS Wismar bietet das Unternehmen ein Komplettpaket für höherwertige und ästhetische Installationen an.
Der Systemanbieter Wagner Solar mit Sitz in Cölbe wird das Indachsystem Solrif der Ernst Schweizer AG in sein Portfolio aufnehmen. Damit stellt sich das Unternehmen in einem sich entwickelnden Markt für dachintegrierte Solarsysteme besser auf. Denn bisher hat Wagner Solar im Dachbereich nur das Aufdachsystem Tric im Angebot.
Neuen Vertriebskanal öffnen
Die Ernst Schweizer AG schafft sich mit der Kooperation einen neuen Vertriebskanal in Deutschland. Das Unternehmen aus dem schweizerischen Hedingen will damit das seit 20 Jahren bewährte und immer wieder optimierte System noch stärker im deutschen Markt etablieren. „Die Bekanntheit und Reichweite von Wagner werden uns bei der Marktbearbeitung helfen“, betont Helge Hartwig, Vertriebsleiter für Montagesysteme für Photovoltaikanlagen bei Ernst Schweizer. „Zudem eröffnet sich für uns ein neuer, attraktiver Vertriebskanal über den Großhandel. In der Schweiz ist das bereits üblich, aber in Deutschland noch nicht so verbreitet.“ Das soll sich ändern. Das Ziel des gemeinsamen Vertriebs: Pro Jahr sollen Indachsysteme mit einer Leistung von zwei Megawatt installiert werden.
Komplettsystem mit Modul im Angebot
Wagner Solar bietet dazu die Systeme in Verbindung mit den Modulen von CS Wismar an. Der Großhändler in Cölbe versteht sich als Anlaufstelle für Installateure, die Komplettpakete bestehend aus Montagesystem und Modulen suchen. „Durch die Kombination mit den Glas-Glas-Modulen von CS Wismar, der die Module mit Solrif-Rahmen herstellt, entsteht ein interessantes Produkt, das unsere Angebotspalette abrundet“, betont Andreas Knoch, Technikleiter bei Wagner Solar.
Die Partnerschaft startete im August 2020. Erste Nachfragen von Kunden liegen bereits vor und die entsprechenden Angebote sind unterbreitet. Neben Deutschland wird Wagner Solar das Solrif-System auch in anderen europäischen Ländern vertreiben. (su)
Beispiele, wie solche Solardächer mit der Indachphotovoltaik aussehen können, finden Sie in der Projektdatenbank von Solar Age. Nach Anmeldung können Sie das gesamte Angebot von Solar Age kostenfrei nutzen.
Bayerische Hauseigentümer setzen auf Solarbatterien
Mehr als 22.000 bayerische Hauseigentümer haben einen Antrag zur Förderung eines Speichersystems gestellt. Weitere Anträge für den Investitionszuschuss können noch gestellt werden.
Das Bayerische Programm zur Förderung von Speichern für Photovoltaikanlagen erfreut sich größter Beliebtheit. Innerhalb eines Jahres sind beim Wirtschaftsministerium mehr als 22.000 Förderanträge eingegangen. Bisher hat München über 10.000 dieser Anträge bereits bewilligt.
Das Programm läuft seit August 2019 und wurde ursprünglich im Rahmen eines Förderprogramms für 10.000 Photovoltaikanlagen integriert. Doch während das 10.000-Häuser-Programm inzwischen ausgelaufen ist, hat München das Speicherprogramm weitergeführt. Inzwischen scheint es aber auch in die Zielgerade zu gehen. Denn laut Energieatlas Bayern sind nur noch gut 5.000 Anträge übrig.
Zuschuss zwischen 500 und 3.200 Euro möglich
Die Zahlen, die das Bayerische Wirtschaftsministerium jetzt veröffentlicht hat, zeigen, dass sich vor allem Besitzer von Ein- und Zweifamilienhäusern für einen Speicher zusätzlich zu ihrer neuen Solaranlage entscheiden. Dabei liegt die durchschnittliche Speicherkapazität bei etwa acht Kilowattstunden und damit die mittlere Fördersumme bei 1.000 Euro. Denn je nach Speichervolumen gibt es einen festen Investitionszuschuss. Der reicht von 500 Euro für einen Speicher mit einer Kapazität zwischen drei und 3,9 Kilowattstunden, integriert in eine Solaranlage mit einer Leistung von mehr als drei Kilowatt, bis hin zu 3.200 Euro. Diesen Fördersatz bekommen Hauseigentümer die ihre Solarbatterie mit einem Speichervolumen von mehr als 30 Kilowattstunde zusätzlich zu einer Solaranlage mit einer Leistung von mehr als 30 Kilowatt errichten.
Bonus für die Ladestation
Zusätzlich dazu können die Hauseigentümer noch die Förderung für eine Ladestation für ein Elektroauto beantragen. Dafür gibt es einen zusätzlichen Investitionszuschuss von 200 Euro. Bisher haben fast 4.000 Hauseigentümer auf diese Möglichkeit zurückgegriffen. (su)
Symposium for solar building takes place in September
The second symposium for solar building will take place on 16 September 2020. An exciting programme will show the opportunities of solar architecture. The event will run digitally on the Internet.
The event, organized by the Swiss industry association Swissolar together with the Austrian Technology Platform Photovoltaics, the Swiss construction newspaper TEC21 and the energy journal for homeowners Energie Schweiz, is about integrating solar architecture into the environment. The focus is once again on the design, energy and economic possibilities of a project of building-integrated photovoltaics. Experts such as Bernard Plattner from Renzo Piano Building Workshop will report on the requirements and their practical experience using the example of the award-winning Palace of Justice in Paris.
Programme to be published in July
The programme has not yet been finalised. The organizers will publish it in mid-June 2020, when you can register as a participant. However, it is already certain that the event will take place on the Internet in order to avoid any risk of epidemic-hygienic risks from the outset.
Apartment building in Linz: Solar-powered heating rods produce hot water
Together with My PV, a housing company in Linz has equipped an apartment building with a modern energy concept. The water for showering, bathing and dishwashing is warmed by heating elements, which primarily use solar power from the roof.
The Gemeinnützige Wohnungsgesellschaft in Linz has equipped a new apartment building with a trend-setting energy concept. This is because all hot water is no longer heated centrally in the basement, but directly in the apartments and mainly with solar power from the building’s roof. For this purpose, each apartment unit was equipped with a separate hot water tank in which the sun energy is temporarily stored.
Heating elements use direct current
When the photovoltaic systems produce electricity, it is consumed directly by the Elwa heating rods from My PV. They heat the water in the storage tank. In this way, residents also have solar heat when the sun has already set. In order to use as much solar power as possible, these heating rods must be steplessly adjustable on the one hand, and on the other hand, they must be able to start up even when the supply of energy from the roof is low. In addition, the heating elements use the DC power coming directly from the solar modules. Should the solar energy not be sufficient, they are also able to switch to AC power from the socket.
What the overall energy concept looks like and what advantages it has compared to conventional water heating can be read in a new dossier that is available for download in the Solar Age’s project database. After registering as Club Memeber, you can use the complete Solar Age portfolio free of charge. (su)
The all-electric building: Solar Age broadens its knowledge database
With a new focus, Solar Age presents the possibilities offered by a all-electrically operated building. In addition to basic information, the new dossier contains concrete examples that give the user a deep insight into the topic.
With a new feature, the architecture portal expands the library of specialist knowledge about solar supplied buildings. This is because a current focus is concerned exclusively with all-electric building supply – including heat and mobility. The focus is on the delivery of space heating and hot water with solar-powered electric heating rods.
Advantages described in detail
The dossier contains comprehensive expertise on the issue of all-electric buildings. In addition to a basic article, which mainly describes the technology and its advantages over water-based heating, it also includes other presentations. For example, Reinhard Hofstätter, sales manager of the Austrian manufacturer My PV, uses concrete examples and calculations in two specialist articles to show the technical, planning and financial advantages of the all-electric house over other technologies.
Projects show the possibilities
This expertise for planners and architects is supplemented by descriptions of several different projects. Here, the focus is on the financial and technological advantages and, above all, on the planning implementation of such projects. The dossier is rounded off by contributions on various fundamental aspects of the all-electric house. These not only deal with the use of roof and façade surfaces for the necessary power generation, but also with other applications such as building cooling. In addition, there is information on insurance law aspects of solar activation of the building envelope and other planning details such as the integration of solar systems into the building’s lightning protection concept.
The dossier is available in the Solar Age library in German and English. After subscribing as a Club Memeber of Solar Age, you can use the complete Information service of Solar Age free of charge. (su)
ML System developed active solar glass with nanostructures
Nanocrystalline semiconductor dots supply the power in the active solar glasses of the Polish company ML System. This enables the manufacturer to better meet customer requirements in terms of transparency and reflection.
The Polish company ML System has developed a solar glass in which the incoming sunlight is converted into electricity by nanocrystalline semiconductor dots – so-called quantum dots. This enables the company to implement the values of thermal insulation, light transmission and reflection required by the customer via the quantity of quantum dots used, while at the same time offering an energetically activated façade element. Simultaneously, the glass protects the users of the rooms equipped with the solution from harmful UV and infrared radiation. This is because these parts of the light spectrum are used by the quantum dots to produce electricity.
Reducing heat input into rooms
According to ML System, the solar glasses can also reduce the heat input into the rooms by up to 80 percent, which reduces the use of cooling systems, particularly in hot summer months. This is because it means that the temperature in the rooms drops by around two degrees Celsius during this period.
In principle, the quantum dots function like normal crystalline solar cells. However, their nanostructure also has properties that thin-film technologies possess. Among other things, the small semiconductor dots are less dependent on the angle of incidence of the sun’s rays than flat crystalline solar cells. For this reason, the developers consider the solution to be used primarily in solar façades.
Start of production next year
The developers hope that their solution will also lower the prices for such solar windows. The company is currently in the process of bringing mass production to the market. According to the company, the production hall is already in place and ML System plans to have the machines set up by the end of this year. Then the first active solar glasses with quantum dots are to roll off the production lines next year. At the same time, the company wants to implement pilot projects to make the solution more concrete for architects. This year, the development was selected and awarded a prize as one of the products of the future by the Polish Agency for Enterprise Development. (su)
Solutions for solar architecture can be found in the Solar Age product database. After registration you can use the entire content of the architecture portal free of charge.
Trio aus Solaranlage, Speicher und Wärmepumpe hat sich bewährt
Familie Popp hat sich beim Neubau ihres Einfamilienhauses für ein modernes Energiekonzept aus Wärmepumpenheizung und Elektroauto – beides angetrieben von selbst produziertem Solarstrom – entschieden. Für die Erhöhung des vor Ort genutzten Solarstromanteils sorgt ein großes Speichersystem.
Bisher hat Familie Popp aus Oberfranken mit Öl geheizt. Jedes Jahr musste sie etwa 5.000 Liter durch den Brenner jagen, um die Räume ihres alten Hauses zu beheizen und genügend Warmwasser zu bereiten. Das sollte sich beim Bau eines neuen Domizils ändern. Dazu setzte Gerhard Popp einerseits auf einen guten Dämmstandard. Doch andererseits wollte er die Energieversorgung nict nur auf Erneuerbare umstellen, sondern auch selbst in die Hand nehmen.
Deshalb statte er sein Dach mit einer Photovoltaikanlage aus. Zwar verzichtet er auf die Integration der Module in die Dachhaut – beim Neubau eine Alternative zur herkömmlichen Dacheindeckung, die sich durchaus rechnet. Allerdings hat er zumindest einen ästhetischen Kompromiss gefunden. Denn er hat sich für schwarze Module entschieden, die im Vergleich zu den ebenfalls schwarzen Dachziegeln nicht allzu auffällig sind.
Sonden für die Wärmepumpe gebohrt
Diese Module mit einer Leistung von 9,86 Kilowatt treiben eine Wärmepumpe an. Zwar wäre auf dem Dach Platz für mehr Module gewesen. Doch hätte dann die Familie Popp anteilig EEG-Umlage auf den gesamten, selbst genutzten Strom zahlen müssen. Das wollte sie aber vermeiden. Die Monteure der Gemeinhardt AG aus Oberkotzau bei Hof haben Für die Wärmeversorgung vier bis zu 100 Meter tief reichende Erdsonden verlegt, um von dort die Wärme für die Wärmepumpe zu beziehen. Die Anlage läuft hauptsächlich, wenn die Sonne scheint und die Module ausreichend Strom liefern. Was nicht sofort verbraucht wird, schickt die Wärmepumpe in einen Pufferspeicher mit einem Fassungsvermögen von 1.000 Litern. Außerdem gibt es eine Lüftungsanlage mit Wärmerückgewinnung, die ganzjährig in Betrieb ist.
Energieverbrauch drastisch reduziert
Auf diese Weise verbraucht die Familie nur ein Zehntel der Energie für die Wärmebereitstellung, die sie im alten und viel kleineren Gebäude benötigte. Denn sie kann das neue Haus mit einer Wohnfläche von immerhin 300 Quadratmetern mit nur 5.200 Kilowattstunden Strom beheizen. Das ist das Äquivalent, das mit 520 Litern Heizöl erreicht werden würde. Dabei kommt mehr als die Hälfte des Stroms für die Anlage aus dem Solargenerator auf dem Dach.
Diesen hohen Wert erreicht die Familie Pop mit einem Stromspeicher, der zusätzlich im Keller installiert ist. Denn wenn nicht genügend Solarstrom aus der Anlage auf dem Dach selbst kommt, kann das Hauskraftwerk, das der Osnabrücker Speicherhersteller E3/DC geliefert hat, weitere Sonnenstrom liefern. Auf diese Weise gelingt es der Familie auch, das Elektroauto, das mit einer Wallbox in der Garage geladen wird, zur Hälfte mit Solarstrom zu betanken.
Speicherkapazität erhöht
Zunächst hatte die Familie zunächst ein Hauskraftwerk S10 E von E3/DC mit einer Kapazität von 10,56 Kilowattstunden installierten lassen. Das dreiphasige Gerät kann mit einem integrierten Energiemanagement die einzelnen Verbraucher so steuern, dass möglichst viel Solarstrom vor Ort verbraucht wird. Denn dadurch wird der produzierte Solarstrom zunächst an die Verbrauhcer vor Ort geschickt. Sind diese ausreichend versorgt, schaltet das Management um und lädt den Speicher. Erst wenn dieser voll ist und der Verbrauch im Gebäude weiterhin abgedeckt ist, fließt dann noch überschüssiger Solarstrom in das Verteilnetz des örtlichen Versorgers. Um den vor Ort verbrauchten Anteil von Solarstrom zu erhöhen, hat Gerhard Popp das Speichersystem nach einem Betriebsjahr noch aufrüsten lassen auf ein Volumen von 15,84 Kilowattstunden. Dazu haben die Installateure einfach ein zusätzliches Batteriemodul eingesetzt – ein Vorteil von modular aufgebauten Speichersystemen.
Eine ausführliche Beschreibung des Systems finden Sie in der Projektdatenbank des Architekturportals Solar Age. Dort finden Sie auch die konkreten Verbrauchswerte und Produktionsdaten der Solaranlagen. Nach Anmeldung können Sie die gesamten Inhalte von Solar Age kostenfrei nutzen.
For the third time, Solar Power Europe is awarding a special prize to innovative start-ups from the solar and storage industry. The organizer will accept applications until 31 August 2020.
As part of the Solar Power Summit, which is taking place online this year, the organizer Solar Power Europe (SPE) is offering a prize for young companies in the solar and storage industry. The focus is on digital applications and innovative storage solutions. SPE is accepting applications for the Digital Solar & Storage Award until 31 August. All young companies that have developed solutions in the field of digitalization of photovoltaics and storage applications and have at least 20 employees can participate in the competition.
The prize: money and support
The winners will receive a prize fund of 5,000 euros donated by Enerparc. They will also be able to present their solution at the Solar Power Summit and receive coaching from Bee Founders, a Belgian agency specialising in supporting young companies in the environmental and climate protection sector. In addition, they can present themselves as a company on the Solar Power Summit website and receive free membership of SPE for one year.
Virtual European industry meeting
The finalists will be presented during the virtual meeting of the European solar and storage industry on 30 September 2020. The winner will also be selected during this event. This year, the Solar Power Summit will take place from 28 September to 2 October as an Internet event for reasons of epidemic hygiene. Applications for the Startup Prize can be submitted on the Solar Power Summit website. (su)
Heat pumps provide enought heating load in existing buildings
A long-term study by Fraunhofer ISE has shown that heat pumps in existing buildings can reliably provide sufficient heating. A requirement is that the systems are designed to complement the building.
Owners of existing buildings still rarely use electric heat pumps. This is because there has been little research to date on how heat pumps can reliably supply heat to existing buildings. The researchers at Fraunhofer ISE have now changed this. They have monitored heat pump installations in various older buildings with different energy standards over a period of five years. The results are very promising. After all, the devices usually operated perfectly. There were hardly any malfunctions during operation, if the systems were designed to be compatible with the respective building.
Flow temperatures are sufficient
As a rule, the 41 systems analysed were also able to reliably provide enough thermal energy to heat the buildings sufficiently even on cold winter days. „In existing buildings, the required heating circuit temperatures in the standard design point are often discussed, i.e. the heating circuit temperatures at very low outside temperatures around minus 12 to minus 16 degrees Celsius,“ explains Marek Miara, coordinator of heat pumps at Fraunhofer ISE. „However, such bitterly cold days occur only very rarely. Therefore, the decisive factor for efficiency is above all the temperatures required when heating is at its peak, i.e. at temperatures just above zero degrees Celsius. The rare extremes are therefore hardly significant in the annual balance.
Heating elements were rarely used
This is also shown by the operating times of the electric heating elements installed as back-up. In the case of air heat pumps, these only had to supply 1.9 percent of the heat. In the case of ground source heat pump systems, the electric heating elements were not used at all during the entire observation period. Reliable operation was less dependent on the energy standard of the building than on the correct design of the entire system.
Heat pumps reduce the climate impact of existing buildings
At the same time, the researchers were able to calculate the advantages of heat pump heating for the climate. On the basis of the heat provided, they could compare it with gas condensing boilers. The result: the heat pumps cause between 19 and 57 percent less CO2 emissions than a condensing boiler with the same heating power. This value applies to the use of grid electricity. If the heat pumps consume a large part of solar power produced on site, the CO2 emissions of the systems are significantly reduced.
The complete study is available for free download on the Fraunhofer ISE website. (su)
Dieter Moor of Ertex Solar: BIPV sees a slight increase
Ertex Solar in Amstetten, Lower Austria, specializes in producing modules according to the requirements of architects and builders. In an interview, Dieter Moor, CEO of Ertex Solar, explains the development of demand and what is needed to stimulate the market.
Ertex Solar became part of a new parent company last year. How has that affected the project business?
The impact of the new parent company Vinci Construction is noticeable in the project business in that more projects are being requested and implemented from France.
What do the sales channels for customized modules look like?
Currently, the sales channels for custom-made modules are as follows: In the most common case, architects contact us, but builders also often request projects with BIPV themselves. Furthermore, we also manufacture modules for facade constructors or metal builders.
How is the demand for modules for building-integrated photovoltaics currently developing?
The demand for building-integrated photovoltaics is currently experiencing a slight increase. Not least because the topic of Fridays for Future has brought climate protection back into focus and people are looking for sustainable options. BIPV 4 Future would also be an appropriate slogan in this case.
How would the framework conditions have to change for BIPV to be used more often?
Awareness of sustainable aspects in building architecture would definitely have to be raised among architects and builders. In principle, in all projects where glass is to be installed, Ertex Solar’s glass modules could be installed instead. Often, however, awareness of this option is not yet present, which is why there is definitely still a need for action here.
Who has been asking you for modules for solar facades or overhead glazing in recent months – is the commitment to BIPV coming more from architects or more from building owners?
Actually, we get requests for solar facades or overhead glazing from architects and builders alike.
Are Ertex Solar modules mainly used in new buildings or are there also renovation projects that are equipped with solar facades?
The modules are increasingly used in new buildings. This could be due, for example, to the fact that there is even more design freedom available to builders and architects here. In the case of renovation projects, there are often stricter specifications, which then often represent a hurdle for builders as to why BIPV is not used.
What technological trends, such as color or cell technologies, have crystallized in recent months and have these changed compared to previous years?
Recently, there has been an increased demand for homogeneous modules where the bus bars are not visible. In addition, there have been some requests for modules with a colored windshield.
One of Ertex’s unique selling points has been its ability to produce very large modules. Among other things, Ertl Glas‘ autoclave was used for this purpose. Is that still possible and up to what sizes can you offer modules?
The autoclave from Ertl Glas needed to be used only once for the production of modules with dimensions of three by four meters. Otherwise, Ertex Solar’s in-house autoclave is used for the production of modules with maximum sizes of 2.4 x 5.1 meters, which is why the production of oversized modules is definitely still a unique selling point of Ertex Solar.
What is the demand for such very large modules?
Especially for parking lot roofing, modules of sizes up to five meters are extremely in demand – among other things, due to the fact that the number of butt joints can be minimized with modules of this size. Various projects are currently in progress, but interested parties will certainly be able to read more details about them in the near future on our homepage or on our social media channels.
How are the prices for BIPV developing – are they falling in line with photovoltaic prices or are there other mechanisms at work?
The prices for BIPV are currently rather stable, the costs for the cell itself basically only make up a fraction of the total price. The bulk consists of the costs for engineering, materials such as the glass or the film, and of course the production costs.
The questions were asked by Sven Ullrich.
Examples of the possibilities architects have with Ertex Solar modules can be found in Solar Age’s project database.
Sonne senkt Fahrkosten mit Elektroautos um 70 Prozent
Wenn der Fahrer eines Elektroautos selbst produzierten Solar- statt Haushaltsstrom tankt, kann er viel Geld sparen. Dadurch werden wiederum Kaufhemmnisse abgebaut.
Fahren mit einem Elektroauto ist in der Regel preiswerter als mit einem herkömmlichen Benziner oder Diesel. Doch die steigenden Preise für Haushaltsstrom, den viele Elektroboliden tanken, frisst mehr und mehr diesen Vorteil auf. Das wird zu einem neuen Hemmnis beim Kauf von Elektroautos, wie die Marktforscher vor EuPD Research herausgefunden haben.
Hohe Stromkosten hemmen den Verkauf
Die Analysten haben im Auftrag des Speicherherstellers E3/DC gut 2.000 Bundesbürger unter anderem auch zu Kaufhemmnissen bei der Elektromobilität befragt. Dabei hat sich herausgestellt, dass 73 Prozent derjenigen Befragten, die sich schon für den Kauf eines Elektroautos entschieden haben, die steigenden Strompreise als Hürde für die Umsetzung ihrer Entscheidung sehen. Ein Elektroauto verbraucht derzeit zwischen 15 und 30 Kilowattstunden Strom pro 100 Kilometer. Bei einer jährlichen durchschnittlichen Laufleistung von 14.000 Kilometern verbraucht das Fahrzeug zwischen 2.100 und 4.200 Kilowattstunden Strom. Das kostet bei einem durchschnittlichen Strompreis von 31,4 Cent pro Kilowattstunde jährlich zwischen 600 und 1.300 Euro.
Solarstrom ist preiswerter als Haushaltsstrom
Da die Strompreise in naher Zukunft weiter steigen, schlägt sich das auf die Kosten für das elektrische Fahren nieder. Deshalb raten die Analysten zur Nutzung einer Solaranlage. Denn die Kosten für den Solarstrom werden immer geringer und erreichen derzeit selbst für Dachanlagen Bereiche von zehn Cent pro Kilowattstunde. Lädt das Auto ausschließlich selbst produzierten Solarstrom, sinken die jährlichen Fahrkosten um 450 bis 900 Euro, wie die Analysten von EuPD Research berechnet haben. Das Entspricht einer Einsparung von 69 Prozent. (su)
Architects for Future fordern ambitioniertes Gebäudeenergiegesetz
Architects for Future will mit einer Petition erreichen, dass die Ökologie beim Bauen und beim Betrieb von Gebäuden stärker berücksichtigt wird.
Die Vereinigung Architects for Future (AFF) hat eine Petition gestartet, um der Forderung Nachdruck zu verleihen, dass energetisch nachhaltiges Bauen stärker im Gebäudeenergiegesetz (GEG) berücksichtigt wird. So solle unter anderem die graue Energie, die in das Gebäude gesteckt wird, bei der energetischen Bewertung mit einfließen. Zudem sollten stufenweise Bauprojekte mit einer schlechten Bewertung ihrer ökologischen und energetischen Qualität verboten werden. Konkret wollen die Architekten, dass ab 2025 nur noch Bauprojekte genehmigt werden, die zu 60 Prozent ökologisch umgesetzt werden. Ab 2028 steigt die Hürde auf 80 Prozent und ab dem Jahr 2030 darf nur noch zu 100 Prozent ökologisch gebaut werden.
Klimaschäden einpreisen
Die Vereinigung begründet das mit dem großen ökologischen Fußabdruck, den die Bauwirtschaft und der Betrieb von Gebäuden hinterlässt. Bisher werde in der Energieeinsparverordnung, die jetzt Teil des GEG ist, und für die Kreditvergabe der KfW nur der Betrieb von Gebäuden berücksichtigt, nicht jedoch die graue Energie, die benötigt wird, um das Gebäude zu errichten. Hier müsse die Politik endlich umsteuern und die Klimaschäden, die billige und ökologisch bedenkliche Baustoffe verursachen, endlich mit einpreisen.
Ziele der UNO einhalten
Damit sollen auch die Nachhaltigen Entwicklungsziele der UNO eingehalten werden, die für alle Länder gelten und bis 2030 umgesetzt werden müssen. Hier sind auch die Städte gefordert, den Klimawandel aktiv zu bekämpfen. Das gehe nur mit einem Verbot billigen und klimaschädlichen Bauens. Denn nur ein Gebäude, das zu 100 Prozent ökologisch nachhaltig ist, berücksichtigt den CO2-Haushalt, die Gesundheit der Menschen, die Biodiversität und den weltweiten Ressourcenbestand.
Sonnenenergie und Erdwärme nutzen
Neben dem ökologischen Bauen müsse aber auch der Betrieb von Gebäuden stärker den Klimawandel in den Blick nehmen. So fordern die AFF eine nachhaltige Energieversorgung, die nur erreicht wird, wenn beim Betrieb des Gebäudes ein Nettoenergieplus entsteht. Das geht wiederum nur mit der Nutzung der Sonnenenergie in Form von Photovoltaik oder Solarthermie, sowie mit der Nutzung von Erdwärme. (su)
Architects for Future call for ambitious building energy law
By means of a petition, Architects for Future wants to achieve that more consideration is given to ecology in the construction and operation of buildings.
The Architects for Future (AFF) association has launched a petition to push for more consideration to be given to energy-efficient and sustainable construction in the German Building Energy Act (GEG). Among other things, the grey energy that is put into the building should be included in the energy evaluation. In addition, building projects with a poor assessment of their ecological and energy quality should gradually be banned. In concrete terms, the architects want only building projects that are 60 percent ecologically implemented to be approved after 2025. From 2028 the hurdle rises to 80 percent and from 2030 only 100 percent ecological construction is allowed.
Climate damage pricing
The association justifies this with the large ecological footprint that is caused by the construction and the operation of buildings. Until now, the Energy Saving Regulations, which are now part of the GEG, and for KfW financing, only take into account the operation of buildings, but not the grey energy needed to construct the building. Politicians must finally change their course here and finally include the climate damage caused by cheap and ecologically questionable building materials in their prices.
Meet UNO targets
This is also intended to comply with the UN’s sustainable development goals, which apply to in all countries and must be implemented by 2030. Here, cities are also called to take active steps to combat climate change. This can only be done by banning cheap and climate-damaging construction.
Using solar and geothermal energy
In addition to ecological construction, however, the operation of buildings must also take climate change more into account. The AFF, for example, demand a sustainable energy supply, which can only be achieved if the operation of the building generates a net energy surplus. This in turn can only be achieved by using solar energy in the form of photovoltaics or solar thermal energy, as well as by using geothermal energy. (su)
All-electric house saves 49 percent of energy costs
For the complete energy supply of a single-family house in Austria, the residents paid only 750 euros per year. This becomes possible through the heat supply with an electric boiler, which uses largely solar power.
A family of three in Austria has opted for a new solution for the heat supply of their single-family home. Because all the heating energy and hot water is provided by an electric boiler. This in turn uses surplus solar power from a photovoltaic system on the roof of the building with a peak power of eleven kilowatts. The solar power is initially used to operate the electrical devices in the building. Once these are supplied, a power controller AC Thor from the Austrian manufacturer My PV feeds the solar energy into the electric heating system. Only when the heat supply is also covered does excess electricity flow into the grid.
Annual evaluation is available
After a full year of operation of the system, the first data are now available on how the system has performed. The evaluation shows that between May 1st, 2019 and April 30th, 2020, the family pays 49 percent less electricity costs compared to a heat supply with a heat pump. This is because the boiler does not run exclusively on solar power. If too little solar energy is available, the family has to run the boiler with electricity from the grid. But the electricity supply still remained manageable with 7,658 kilowatt hours. On the other hand, the family fed 6,700 kilowatt hours of excess solar power into the grid.
750 Euro energy bill
As prescribed in Upper Austria, the family also has a non-electric heating system. In December and in January 2020 a Sweden-stove provided more comfort in the rooms of the house. The family paid about 80 Euros for the scarce cubic metre of beech wood, which the family burned. Together with the electricity from the grid, the residents paid a total of 750 euros for the entire energy supply. (su)
Österreich: Verband schlägt Rechtsrahmen für Energiegemeinschaften vor
Das Beratungsinstitut E3 Consult hat im Auftrag von Erneuerbare Energien Österreich Rahmenbedingungen für die Schaffung von Energiegemeinschaften ausgearbeitet. Schließlich muss bis Mitte 2021 auch Österreich entsprechende europäische Regelungen umsetzen.
Der Branchenverband Erneuerbare Energien Österreich (EEÖ) hat zusammen mit dem auf Energiewirtschaft spezialisierten Beratungsinstitut E3 Consult Vorschläge für den Rechtsrahmen für Energiegemeinschaften ausgearbeitet. Das Diskussionspapier definiert Bedingungen, die Österreich braucht, damit Vereine, Genossenschaften oder andere Akteure gemeinschaftlich Ökostromanlagen errichten und betreiben. EEÖ verweist dazu auf die Regelungen, die die Europäische Kommission in der Erneuerbaren-Richtlinie festgelegt hat und die in allen Mitgliedsstaaten bis Mitte des kommenden Jahres umsetzen müssen – also auch Österreich.
Bürger aktiv beteiligen
Doch es ist nach Ansicht von Martina Prechtl-Grundnig, Geschäftsführerin von EEÖ und Jürgen Neubarth, Studienautor und Geschäftsführer von E3 Consult für die Energiewende notwendig und vorteilhaft, wenn Energiegemeinschaften ein fester Bestandteil des Gesamtsystems werden. Denn sie können einerseits die regionale Energieversorgung vorantreiben, Bürger zu aktiven Teilhabern am Energiesystem machen und sie an regionalen Wertschöpfungsketten beteiligen. „Energiegemeinschaften schaffen nicht nur eine höhere Akzeptanz der Bevölkerung für den Ausbau erneuerbarer Energie, sie mobilisieren auch privates Kapital für die Energiewende und optimieren das energiewirtschaftliche Gesamtsystem“, betont Neubarth. „Denn durch Energiegemeinschaften wird der Strom dort erzeugt, wo er benötigt und eingesetzt wird.“
Positive Effekte nutzen
Denn Produzenten und Verbraucher werden zusammengeschlossen und einzelne Sektoren gekoppelt. Dadurch werden auch Schwankungen von lokaler Erzeugung und lokalem Verbrauch unmittelbar vor Ort ausgeglichen. Doch dafür braucht es geeignete Rahmenbedingungen. „Österreich muss bei deren Schaffung ambitioniert die Chancen nutzen und darf sich bei der Ausgestaltung des Rechtsrahmens nicht nur an den Mindestanforderungen der EU orientieren“, fordert Prechtl-Grundnig. „Denn nur so können die vielen positiven Effekte solcher Gemeinschaften umfangreich genutzt werden. Für das Gelingen der Energiegemeinschaften müssen wir groß denken und brauchen möglichst wenige Hürden!“
Hürden beseitigen
Zu den zentralen Forderungen der Branche gehören neben den niedrigen Einstiegshürden auch die Schaffung von kostenlosen und unbürokratischen Beratungsmöglichkeiten sowie finanzielle oder steuerliche Anreize, um die Schaffung von Energiegemeinschaften zu erleichtern. Das gilt vor allem für diejenigen Akteure, die bei der Gründung von solchen Gemeinschaften vorangehen. Hier sind es aber nicht ausschließlich Fördermittel, die Studienautor Neubarth im Blick hat, sondern vor allem faire Netzentgelte. Denn diese müssten den Nutzen, die Energiegemeinschaften für das Netz bringen, mit einpreisen. Zudem müssen auch die technischen Rahmenbedingungen stimmen. Dazu gehört unter anderem der diskriminierungsfreie Netzzugang. Das gesamte Diskussionspapier steht auf der Internetseite von EEÖ zum kostenlosen Download zur Verfügung. (su)
Interesse der Hauseigentümer und Bauherren an Photovoltaik steigt
Immer mehr Hauseigentümer suchen nach einer Photovoltaikanlage. Doch sie suchen nicht nur, sie kaufen oder mieten auch immer öfter.
Immer mehr Besitzer und Bauherren von Ein- und Zweifamilienhäusern setzen auf Solarstrom. Das geht zumindest aus einer Datenerhebung des Onlinevermittlers für Solaranlagen Aroundhome hervor. Das Unternehmen hat 100.000 Anfragen von Hauseigentümern ausgewertet, die sich für eine Solaranlage interessierten – sowohl zur Miete als auch zum Kauf. Das Ergebnis: Die Zahl derjenigen, die nach der Anfrage immer noch unentschlossen sind, sank von 71 Prozent im Jahr 2018 auf 55 Prozent im Jahr 2019. Demnach haben sich 45 Prozent der Interessenten am Ende tatsächlich für eine Photovoltaikanlage entschieden.
Davon haben 91 Prozent die Anlage gekauft. Nur neun Prozent haben sich für die Miete des Generators entschieden. Das ist vor allem in strukturschwachen Regionen eine Alternative zum Kauf, der vor allem mit hohen Anfangskosten zu Buche schlägt, sich aber innerhalb von wenigen Jahren rentiert.
Anfragen gehen schon im Frühjahr ein
Doch es ist nicht nur die Zahl derjenigen gestiegen, die gekauft oder gemietet haben. Vielmehr gehen bei Aroundhome derzeit immer mehr Suchanfragen nach Solaranlagen ein, wie Mathias Klement, Produktleiter beim Onlinevermittler bestätigt. Er verweist darauf, dass in der Regel vor allem in den Sommermonaten zwischen Juni und August ansteigen. In diesem Jahr war das aber anders. Die Zahl der Anfragen stieg schon im Frühjahr spürbar an. „Die Coronakrise leistet dazu ihren Beitrag, denn viele Eigenheimbesitzer machen sich aktuell mehr Gedanken um ihre Häuser und die Energieversorgung, weil sie vermehrt von zu Hause arbeiten und nach Lösungen suchen, um Geld zu sparen“, erklärt Klement die Veränderung.
Grund zur Hoffnung
Er vermutet auch, dass in unsicheren Zeiten das Bedürfnis nach Sicherheit und Unabhängigkeit steige und Photovoltaik mit Speicher versprechen hohe Autarkiegrade. „Die starke Nachfrage ist ein Grund zur Hoffnung“, betont Klement. „Wo die Politik noch Nachholbedarf hat, legen Privatpersonen vor.“ Dies ist umso bemerkenswerter, das nach Angaben von Klement der private Ausbau der Photovoltaik immer noch unter dem Vorurteil des hohen Preises leidet. Doch er betont, dass die Branche in den vergangenen Jahren eine beispiellose Preisreduktion erreicht hat. Zudem wird mit der seit Juli geltenden Mehrwertsteuersenkung die Anschaffung einer Photovoltaikanlage nochmals günstiger. (su)
Solar Age: Information portal for architects now free of charge
The B2B web portal Solar Age from Berlin opens its doors. The paid subscription is replaced by free access. The password will be sent to the users after registration.
The successful B2B portal Solar Age will no longer require paid subscriptions in the future. This was announced by publisher Heiko Schwarzburger and editor-in-chief Sven Ullrich in Berlin. „In its first year of operation, the portal proved to be a great success“, summarized Heiko Schwarzburger, who is also editor-in-chief of the trade magazine photovoltaik. „With our diverse activities, we have succeeded in establishing a community for solar architecture and building integration“.
The portal is aimed at architects, building planners, TGA specialist planners, building energy consultants and the real estate industry.
Increasing the reach
Now it is a matter of further increasing the number of members and increasing the reach of the weekly newsletter. In addition, Solar Age has also been offering webinars and videos about solar architecture since last year.
Since its launch around 18 months ago the product database has grown to 530 solar building products and products for e-mobility. The database for reference objects already contains more than 160 objects worldwide.
In 2020, the stock of products, videos, reference buildings or other useful information will be maintained and expanded. Solar Age also offers interested parties a planning guide for solar façades, which was developed together with Valentin Software from Berlin. (HS)
House project Lebensart uses solar power – also from the storage unit
The Lebensart housing project in the small town of Rotenburg an der Wümme in Lower Saxony has equipped its building with the most modern energy standard. The heart is a photovoltaic system on the roof, which together with an electricity storage system largely covers the energy supply.
Lebensart the inhabitants of a new apartment building in Rotenburg an der Wümme have called their community. The approach of founding an association and thus jointly financing and operating the house is only one of the innovative approaches of the project. The building’s energy concept is also state-of-the-art and has been developed with a view to the standards required in the future. After all, the energy demand of the building with its 3,000 square metres of usable floor space is 40 percent below the specifications required by the German KfW Bank for a new buildings. In addition, there is another plus: an electricity storage device.
Increase self consumption
The focus is on heat supply. This is provided by a heat pump with an thermal power of 30 kilowatts. Added to this is the heat recovery from the ventilation system. Both heat sources are sufficient to completely warm the entire building even on cold winter days. Both systems are powered by solar electricity produced directly on site on the roof of the building. The advantage: because the heat pump uses the solar power directly, the proportion of self consumption increases. But in order to use even more solar power on site, a solar power storage unit from Power Trust was installed in the basement.
34 kilowatt hours storage capacity
The Bremen-based manufacturer does not rely on the lithium-ion battery cells that are now in popular use, but utilizes lead crystal technology. The central argument for this is that the recycling rate is almost 100 percent. „This was a very important selection criterion for us,“ explains Stefan Bruns, who played a major role in developing the project, the choice of the electricity storage system. „Sharing and conserving resources is part of our Lebensart philosophy.“
Apart from the technology used, the storage system does what such a device should normally do: It temporarily stores the excess solar power. This can then be used in the building during times when the sun is not shining. In total, it provides space for 34 kilowatt hours of electricity from the photovoltaic system, which has a capacity of 35 kilowatts.
Covering performance requirements
This is sufficient to cover the required demand of 16 kilowatts of power that is required at most in the building. The specification: The solar system must be able to deliver this maximum demand in cooperation with the storage system for at least half an hour. For this reason, the storage unit was dimensioned so that it can push the electricity with a capacity of 16 kilowatts into the house grid. With a volume of 34 kilowatt hours, it also has enough energy to supply this power for the required period of time. (su)
Further examples of how buildings with the energy standard of the future will look like You can find in the Solar Age project database.
Solar Decathlon Europe 21 architectural competition postponed
The student architecture competition Solar Decathlon Europe will be postponed by a few months. The reason: All participants should have the same conditions. After all, the competition is about solutions for the city of the future.
The student architecture competition Solar Decathlon Europe 21 (SDE21) will be postponed by a few months due to the problems caused by the corona pandemic. Initially, the decathlon for the best sustainably planned and constructed solar building was to take place in September 2021. But now the organizer has decided to reschedule the university competition to June 2022. Wuppertal will remain the location.
Fair competition conditions guaranteed
The organisation team made this decision after a long discussion. On the one hand, there is the risk that the competition itself may be restricted due to possible corona regulations. „However, our main reason to postpone the competition is that the current situation significantly affects the quantity and quality of the teams’ contributions“, Daniel Lorberg, head of the project, explains the decision of the organizers.
The schedule for the teams is tight
After all, the participating countries are affected differently by the disease hygiene measures due to the pandemic. Thus, some teams are more limited in their cooperation than others and are therefore at a competitive disadvantage. „The SDE21 schedule is very tight. The teams have less than two years to design an entire building and to construct one representative residential unit in Wuppertal. Thanks to the postponement, the teams have more time to prepare and we can ensure a fair competition“, Katharina Simon, project director for architecture and urban innovation, points out. „The SDE21 is not about building just any house, no matter how. It is about finding answers for the city of tomorrow that will actually make a difference. By delaying the competition, we provide the conditions to do just that“, Daniel Lorberg adds. (su)
Österreich fördert wieder kleine Photovoltaikanlagen
Die diesjährige österreichische Förderung von Kleinanlagen mit einer Leistung von maximal fünf Kilowatt hat begonnen. Insgesamt stehen zehn Millionen Euro zur Verfügung.
Österreichische Hauseigentümer können die eine Förderung von kleinen Photovoltaikanlagen auch in diesem Jahr beantragen. Lange war nicht klar, ob diese Unterstützung von Solargeneratoren mit einer Maximalleistung von fünf Kilowatt wieder aufgelegt wird. Der Branchenverband PV Austria hat sich sehr dafür eingesetzt. Denn einerseits war die Förderung bei Hauseigentümern sehr beliebt. Andererseits hat PV Austria immer betont, dass sie für den Ausbau von privaten Anlagen wichtig ist. Doch jetzt ist der Fördertopf wieder gefüllt – mit 10 Millionen Euro sogar mit doppeltem Budget im Vergleich zum Vorjahr.
Förderrunde läuft bis März 2021
Die Fördersätze sind gleich geblieben: Für jedes auf der Freifläche oder auf dem Hausdach installiertem Kilowatt Solarleistung gibt es 250 Euro Zuschuss. Ist die Anlage in das Gebäude integriert – gleichgültig ob in das Dach oder in die Fassade –, gibt es einen Bonus von 100 Euro zusätzlich pro Kilowatt installierter Leistung. Da das Unterstützungsprogramm aufgrund der Coronapandemie in diesem Jahr verspätet gestartet ist, läuft die Förderrunde bis Ende März 2021.
Bis dahin können die Hauseigentümer ihren Antrag beim Klima- und Energiefonds stellen. Auch Gemeinschaftsanlagen werden gefördert, wobei für jeden an der Anlage beteiligten Haushalt nur fünf Kilowatt Leistung gefördert werden. Die maximale Größe eines solchen Generators liegt bei 50 Kilowatt. Voraussetzung ist, dass die Anlage noch nicht gebaut ist. Nach Antragstellung hat der Hauseigentümer zwölf Wochen Zeit, um den Generator von einem Fachhandwerker installieren zu lassen.
10.000 Kleinanlagen sind drin
PV Austria geht aufgrund der Erfahrungen der letzten Jahre davon aus, dass mit dem Geld, das im Fördertopf liegt, etwa 10.000 kleine Photovoltaikanlagen gebaut werden können. „Wir sind erleichtert, dass diese so wichtige und breitenwirksame Kleinanlagenförderung des Klimafonds endlich startet und durch die Erhöhung des Förderbudgets, die Wichtigkeit der Sonnenstromerzeugung erkannt wird”, sagt Vera Immitzer, Geschäftsführerin von PV Austria.
Auf der Webseite von Kommunal Kredit Public Consulting finden Sie Informationen über das aktuell noch zur Verfügung stehende Fördervolumen. (su)
Bundestag verabschiedet Gebäudeenergiegesetz – mehr Photovoltaik vorgesehen
Das neue Gebäudeenergiegesetz schreibt den Einsatz von Erneuerbaren wir unter anderem Photovoltaik zur Wärme- und Kälteversorgung vor. Solarstrom kann bei der Ermittlung des jährlichen Primärenergiebedarfs angerechnet werden.
Der deutsche Bundestag hat das Gebäudeenergiegesetz (GEG) beschlossen. Es legt die Regeln für den Neubau von Wohn- und Gewerbegebäuden fest und führt so die bisherigen Regelungen aus den verschiedenen Einzelgesetzen zusammen, die bisher für die Planung von Neubauten relevant waren. Dazu gehören die Energieeinsparverordnung (EnEV), das Energieeinspargesetz, und das Erneuerbare-Energien-Wärmegesetz (EEWärmeG). Es soll die Umsetzung der Gebäudeenergierichtlinie der Europäischen Union sein, die festlegt, dass in Zukunft nur noch der Niedrigstenergiestandard bei Neubauten gelten soll.
Erneuerbare bleiben Pflicht
So hat die Bundesregierung die Vorgaben aus dem EEWärmeG übernommen, was den Einsatz von erneuerbaren Energien zur Erfüllung der Effizienzvorgaben betrifft. Diese wurde aber um die Option erweitert, mit Photovoltaik und Brennstoffzellen ebenfalls die Vorgaben erfüllen zu können. So muss die Wärme- und Kälteversorgung anteilig mit erneuerbaren Energien gedeckt werden. Diese Vorgabe gilt als erfüllt, wenn pro Quadratmeter Nutzungsfläche eine Photovoltaikanlage mit einer Leistung von mindestens 0,02 Kilowatt installiert ist. Voraussetzung ist dabei, dass der Solarstrom größtenteils direkt vor Ort genutzt wird.
Solarstrom senkt Primärenergiebedarf
Die Installation einer Ökostromanlage – in der Regel sind das Photovoltaikanlagen – senkt zudem die ermittelten jährlichen Primärenergiebedarf des Gebäudes um 150 Kilowattstunden pro Kilowatt installierter Leistung, wenn kein Speicher integriert wird. Mit Speicher können 200 Kilowattstunden pro Kilowatt Leistung angerechnet werden.
Dazu kommt noch, dass ab einer Anlagengröße von 0,02 Kilowatt pro Quadratmeter Gebäudenutzungsfläche noch das 0,7fache des jährlichen Endenergiebedarfs angerechnet werden kann. Allerdings können maximal 20 Prozent des jährlichen Primärenergiebedarfs über eine Photovoltaikanlage angerechnet werden. Mit einem Stromspeicher steigt dieses Maximum auf 25 Prozent.
Ähnliche Regelungen gelten auch für Nichtwohngebäude. Allerdings können hier schon mit 0,01 Kilowatt Anlagenleistung pro Quadratmeter Nutzungsfläche das 0,7fache des Energiebedarfs der Anlagentechnik angerechnet werden. Mit einem Speicher kann der Architekt sogar den gesamten Energieverbrauch der Anlagentechnik – nicht nur rechnerisch – mit der Photovoltaik abdecken. (su)
In-roof system from Renusol and Sonnenstromfabik becomes hard roofing
The combination of the Renusol in-roof mounting system and the modules from Sonnenstromfabrik has passed the classification for hard roofing. The system thus meets the same safety requirements as conventional roof claddings.
The Intersole in-roof system from the Cologne-based manufacturer Renusol, in combination with the solar modules of the Excellent series from Sonnenstromfabrik in Wismar, has passed the test standard for hard roofing. The system thus meets the same fire safety requirements as conventional hard roof constructions with tiles.
Test passed
In the case of hard roofing, it is important that the roof coating is resistant to flying sparks and glowing heat. The test was carried out by the testing laboratory of the Leverkusen-based service provider Currenta in accordance with the CEN/TS 1184:2012 standard. All tests were successful. The combination of the in-roof mounting system with the solar modules from Wismar has thus achieved the classification B ROOF (t1). In addition, it meets the EN standard 13501-5:2016, which deals with the evaluation of construction products and types of construction according to their fire behaviour.
On the way to the market
For the two companies, this certification is a further step on the way to the market for roof coverings. In many countries, fire protection and the classification of corresponding products for roofing is becoming increasingly important. Detailed information on Sonnenstromfabrik’s module variants for in-roof installation can be found in the Solar Age product database. (su)
European project for the implementation of BIM presents results
BIMplement, a European joint project, develops learning tools for the implementation of construction planning with Building Integration Modeling. The results so far will be presented in a webinar.
Building Integration Modeling (BIM) has been developed for several years as a future planning tool for architects. The aim here is to digitize the entire planning process – from the draft and the specialist planning to the construction and coordination of the construction site – and, to put it simply, to bring it all together on a platform shared by all those involved. It could also pave the way for photovoltaics into the building envelope. It is the way to construct the Nearly Zero Energy Buildings (NZEB) in the future, as it should become standard in the European Union.
Test results are presented
For three years, partners in the BIMplement project have been developing practical learning tools for users of BIM planning software. One of the biggest hurdles is that potential users shy away from a complex software package. Here the learning tools should help. In the meantime, the BIMplement method has been tested in several experimental sites and field laboratories. The users were able to communicate their problems with the learning programs and make suggestions for improvement. The results of this innovative approach to the development of knowledge and skills of the architects, planners and on construction sites involved will be presented to the target group by the partners involved in a webinar.
They present three different tools for introducing tools and methods for working with BIM in planning offices and on construction sites. The webinar is part of the European Sustainable Energy Week, which is being held as an online conference this year due to the restrictions imposed by the corona pandemic. Interested participants can register for the webinar on the website of the European network Build Up.
Supporting information about planning with BIM and the associated simplification of the integration of photovoltaik into the building envelope can be found in the article „Planned to the end„, which appeared in the trade journal photovoltaik. You can also order this issue as a single issue. Further information on BIMplement can be found on the project’s website. (su)
Photovoltaik: Zubau in Deutschland muss schneller gehen – sonst droht eine Stromlücke
Im Jahr 2023 werden in Deutschland 46 Terawattstunden Strom zu wenig produziert, wenn der Ausbau der Photovoltaik nicht schneller geht. Das haben die Analysten von EuPD Research im Auftrag des BSW Solar und von Solar Promotion ausgerechnet.
Um die Kohlekraftwerke wie geplant schließen zu können und gleichzeitig den Atomausstieg zu beenden, müssen die Erneuerbaren bis 2023 etwa 46 Terawattstunden Strom zusätzlich produzieren. Andernfalls droht Deutschland eine Stromlücke. Das berichtet der Bundesverband Solarwirtschaft unter Berufung auf eine aktuelle Studie der Bonner Marktforscher von EuPD Research.
Ausbau im nächsten Jahr verdoppeln
Deshalb muss der Zubau auch der Photovoltaik viel schneller gehen als bisher. Der im EEG festgelegte Zubaukorridor von 2,5 Gigawatt pro Jahr reicht nicht mehr aus. „Zur Vermeidung einer Stromerzeugungslücke muss der jährliche Photovoltaikausbau von gegenwärtig rund vier Gigawatt im Jahr bereits 2021 auf acht Gigawatt verdoppelt und ab 2022 sogar auf zwölf Gigawatt verdreifacht werden. Verbleibt hingegen der gesetzlich festgelegte Zubau für Photovoltaik bei 2,5 Gigawatt pro Jahr ergibt sich bereits in 2023 eine Stromlücke“, fasst Martin Ammon, Geschäftsführer von EuPD Research, das zentrale Ergebnis der Untersuchung zusammen.
Energiesystem ist im Umbau
Carsten Körnig, Hauptgeschäftsführer des BSW Solar, apelliert deshalb an die Bundesregierung, die Ausbauziele im EEG entsprechend anzuheben. „Gleichzeitig müssen alle Marktbarrieren für die Solartechnik endlich weg“, fordert er. „Wer A sagt und zu Recht aus Atom- und Kohlekraft aussteigt und zugleich mehr Strom oder grünen Wasserstoff unter anderem in der Mobilität sehen möchte, der muss jetzt auch B sagen und den Ausbau erneuerbarer Energien beschleunigen.“ Entsprechend brauche man dringend verlässliche und klare politische Rahmenbedingen, ergänzt Markus Elsässer, Geschäftsführer von Solar Promotion und Veranstalter der Messe The smarter E Europe. „Nur dann entstehen für Industrie, Handwerk und Gewerbe neue Wachstumsmöglichkeiten und zukunftsfähige Geschäftsmodelle. Denn wir sind mitten in einem umfassenden Wandel der Energiesysteme“, betont er.
Strombedarf steigt
Um zu berechnen, wie schnell der Ausbau der Photovoltaik gehen muss, haben die Bonner Analysten im Auftrag des BSW Solar und der Messe The smarter E Europe die Entwicklung des deutschen Strommarktes modelliert. Sie haben hier auch die Sektorenkopplung mit einbezogen. Das Ergebnis: Bis 2035 wird der Nettostromverbrauch in Deutschland von derzeit knapp 500 auf 572 Terawattstunden pro Jahr steigen. Bis 2040 prognostizieren die Marktforscher sogar einen Strombedarf von 880 Terawattstunden pro Jahr. Damit müssen die Erneuerbaren nicht nur den Strom produzieren, der bisher aus den fossilen Kraftwerken und Atommeilern kam. Sie müssen auch noch eine Nachfrage bedienen, die jeweils im Verlauf von fünf Jahren zwischen elf und 17 Prozent ansteigt.
Beim jetzigen Tempo fehlen 2023 etwa 46 Terawattstunden
Diese Lücke müssen die Ökostromanlagen füllen und entsprechend schnell muss der Ausbau gehen. Denn infolge des Atom- und Kohleausstiegs und aufgrund eines derzeit nur schwachen Nettoausbaus der Windenergie an Land werde die Stromerzeugung nach den Prognosen der Marktforscher spätestens in drei Jahren mit der anziehenden Stromnachfrage nicht mehr mithalten können. Trotz des stärkeren Zubaus von Windrädern in Nord- und Ostsee auf zwanzig Gigawatt in den kommenden zehn Jahren fehlen schon im Jahr 2023 mindestens 46 Terawattstunden, wenn die Photovoltaik nicht endlich schneller ausgebaut wird. Diese Stromlücke steigt beim derzeitigen Tempo des Ausbaus von Ökostromanlagen bis 2030 auf 77 Terawattstunden. Das sind immerhin zwölf Prozent des zu diesem Zeitpunkt erwarteten Strombedarfs. (su)
In order to achieve the climate protection goals in the building sector, the German government must take money in hand. The use of renewable energies instead of thick insulation reduces the necessary investment budgets.
A study by the University of Regensburg shows that climate protection targets in the building sector can only be achieved with higher efficiency standards. This applies not only to new buildings, but above all to existing buildings. In Germany, for example, at least two percent of existing buildings need to be modernized to the KfW-55 efficiency house standard in order for the building sector to make its contribution to achieving the climate targets.
Between 6.1 and 14 billion euros necessary
However, the most important thing is that this energetic upgrading does not push up the already extremely high rents, especially in urban areas, even further. On the other hand, the owners of large apartment buildings or the real estate companies cannot manage the entire refurbishment on their own. For this reason, the federal government must support energy-related refurbishment with an investment subsidy. Study author Sven Bienert from the Institute for Real Estate Economics at the University of Regensburg has calculated a requirement of between 6.1 and 14 billion euros. The value depends on the costs of the refurbishment, which are incurred anyway, and thus on how much the energy efficiency of the building can be improved within this framework. The funds currently available through KfW Bank are not sufficient for this purpose.
Refurbishment should not increase warm rent
Because even if property owners exhaust all existing subsidies, there is still a shortfall of between 5.3 and 13.2 billion euros to implement energy-efficient refurbishment in such a way that the warm rents in the cities do not rise further and the landlords‘ returns are not affected. „Rent increases must not be higher than the heating costs saved“, emphasises Lukas Siebenkotten. President of the German Tenants‘ Association (DMB). „Only then will the pursuit of the undoubtedly important climate goals not lead to an even higher housing cost burden and thus to an increasing risk of poverty for part of the tenants“.
Legislator sets wrong priorities
The DMB commissioned the study together with the central association of the housing industry GdW and the German Association for Housing, Urban and Regional Planning (DV). But it is not only the money alone that is missing. It is also the wrong focus that the Federal Government is giving to the renovation of the building stock. After all, it wants to achieve climate protection above all with thick insulation. „It would be cheaper to achieve the climate protection goals if somewhat lower thermal insulation standards were required for the subsidized renovations and if alternative, more green supply solutions were used for the necessary CO2 reduction,“ concludes the study’s commissioners. „These could, for example, be CO2-free heating networks, local solar energy use or heat pumps.
Promoting neighbourhood solutions
Author Sven Bienert suggests that, in addition to promoting the expansion of renewable energies, incentives should be created for the increased development of quarter concepts. „Existing neighbourhoods are an important element in achieving climate targets and should be seen as a good complement to the promotion of individual measures,“ he emphasises in his study. „Instead of extremely expensive efficiency measures, new, energy-saving models must be promoted and tenants‘ electricity must finally be exempted from the tax hurdles,“ demands Axel Gedaschko, President of the GdW. (su)
Um die Klimaschutzziele im Gebäudesektor zu erreichen, muss die deutsche Bundesregierung Geld in die Hand nehmen. Der Einsatz erneuerbarer Energien statt dicker Dämmung verringert die notwendigen Investitionsmittel.
Eine Studie der Universität Regensburg zeigt, dass nur mit höheren Effizienzstandards die Klimaschutzziele im Gebäudesektor erreichbar sind. Das gilt nicht nur für den Neubau, sondern vor allem für den Gebäudebestand. So müssen in Deutschland mindestens zwei Prozent der bestehenden Gebäude auf den KfW-55 Effizienzhausstandard gebracht werden, damit der Gebäudesektor seinen Beitrag zur Erreichung der Klimaziele beitragen kann.
6,1 bis 14 Milliarden Euro notwendig
Dabei ist aber vor allem wichtig, dass diese energetische Aufwertung die ohnehin schon extrem hohen Mieten vor allem in urbanen Räumen nicht noch weiter in die Höhe treiben. Auf der anderen Seite können die Eigentümer von großen Mietshäusern oder die Immobilienunternehmen die gesamte Sanierung nicht allein stemmen. Deshalb müsse die energetische Sanierung vom Bund mit einer Investitionsförderung unterstützt werden. Studienautor Sven Bienert vom Institut für Immobilienwirtschaft an der Universität Regensburg hat hierfür einen Bedarf zwischen 6,1 und 14 Milliarden Euro ausgerechnet. Der Wert hängt davon ab, wie hoch die ohnehin anfallenden Sanierungskosten sind und dadurch in diesem Rahmen eine energetische Ertüchtigung des Gebäudes mit stattfinden kann. Die derzeit über die KfW-Bank ausgereichten Mittel reichen dafür nicht aus.
Sanieren darf Warmmiete nicht steigern
Denn selbst wenn die Immobilieneigentümer alle bestehenden Fördermittel ausschöpfen, fehlen immer noch zwischen 5,3 und 13,2 Milliarden Euro, um die energetische Sanierung so zu realisieren, dass die Warmmieten in den Städten nicht weiter steigen und die Renditen der Vermieter erhalten bleiben. „Mietsteigerungen dürfen nicht höher ausfallen als die eingesparten Heizkosten“, betont dazu Lukas Siebenkotten. Präsident des Deutschen Mieterbundes (DMB). „Denn nur dann führt die Verfolgung der ohne Zweifel wichtigen Klimaziele nicht zu einer noch höheren Wohnkostenbelastung und dadurch zu einem steigendem Armutsrisiko für einen Teil der Mieterschaft.“
Gesetzgeber setzt falschen Schwerpunkt
Der DMB hat zusammen dem Spitzenverband der Wohnungswirtschaft GdW, und dem Deutschen Verbandes für Wohnungswesen, Städtebau und Raumordnung (DV) die Studie in Auftrag gegeben. Doch es ist nicht nur das Geld allein, das fehlt. Es ist auch der falscher Schwerpunkt, den die Bundesregierung bei der Sanierung des Gebäudebestandes legt. Denn sie will den Klimaschutz vor allem mit einer dicken Dämmung erreichen. „Günstiger ließen sich die Klimaschutzziele erreichen, wenn für die geförderten Sanierungen etwas weniger hohe Wärmeschutzstandards verlangt würden und für die notwendige CO2-Einsaprung alternative mehr grüne Versorgungslösungen zum Einsatz kommen“, lautet das Fazit der Auftraggeber der Studie. „Das können zum Beispiel CO2-freie Wärmenetze, lokale Solarenergienutzung oder Wärmepumpen sein.
Quartierslösungen fördern
Autor Sven Bienert schlägt dazu vor, neben der Förderung des Ausbaus der erneuerbaren Energien Anreize für den verstärkten Ausbau von Quartierskonzepten zu schaffen. „Bestandquartiere sind ein wichtiger Baustein zum Erreichen der Klimaziele und sind als gute Ergänzung zur Förderung von Einzelmaßnahmen anzusehen“, betont er in seiner Studie. „Statt extrem teurer Effizienzmaßnahmen müssen neue, energiesparende Modelle gefördert und Mieterstrom endlich von den steuerlichen Hürden befreit werden“, fordert deshalb auch Axel Gedaschko, Präsident des GdW. (su)
Solardeckel in Deutschland: Photovoltaikbranche zieht vors Verfassungsgericht
Die Solarbranche will eine höchstrichterliche anordnen lassen, dass der drohende Förderstopp für neue Solaranlagen endlich aufgehoben wird. Denn andernfalls droht ein Markteinbruch von bis zu 80 Prozent, wie EuPD Research herausgefunden hat.
Wie der Bundesverband Soalrwirtschaft (BSW Solar) mitteilt, hat ein Solarunternehmen aus Hessen beim Bundesverfassungsgericht Beschwerde gegen den Solardeckel eingereicht. Der Kläger wird dabei von über 100 weiteren Unternehmen der Branche unterstützt. Das klagende Unternehmen sieht seine Existenz durch den immer noch gültigen Förderstopp für neue Photovoltaikanlagen, wenn in Deutschland insgesamt Solaranlagen mit einer Leistung von 52 Gigawatt installiert sind.
Die Branche macht Druck
Diese Marke wird noch in den Sommermonaten erreicht. Dann wird der Zubau einbrechen und damit die Auftragsbücher der Solarunternehmen leer bleiben – mit entsprechenden Konsequenzen für die Arbeitsplätze und den Fortbestand der Unternehmen in der Branche. Das verletze das Grundrecht auf Eigentum aus dem Artikel 14 des Grundgesetzes. Die zur Beschwerde bevollmächtigte Berliner Rechtsanwaltskanzlei von Bredow Valentin Herz verweist in ihrer Begründung zudem auf Paragraph 49 Absatz 6 im Erneuerbare-Energien-Gesetz.
Die Zeit drängt
Dort ist geregelt, dass die Bundesregierung vor Erreichen des Solardeckels eine Nachfolgeregelung vorschlägt – und zwar rechtzeitig. Dies ist allerdings nicht geschehen und damit verstößt die Bundesregierung gegen die von ihr selbst eingeführten rechtlichen Bestimmungen. Angesichts der Tatsache, dass die Abschaffung des Solardeckels auch in dieser Woche nicht auf der Tagesordnung des Bundestages steht, bleibt nur noch die letzte Sitzungswoche vor der Sommerpause, um den Weg für den weiteren Ausbau der Photovoltaik frei zu machen. Das wird aber knapp. Denn der Bundesrat muss noch zustimmen. Schafft er das in seiner letzten Sitzung vor der Sommerpause am 3. Juli 2020 nicht, ist der nächstmögliche Termin am 18. September 2020. Bis dahin ist aber der Solardeckel erreicht.
Der Ball liegt im Bundestag
Auf solche unsicheren zeitlichen Konstellationen will sich die Solarbranche aber nicht mehr verlassen. Sie will mit ihrer Verfassungsbeschwerde eine einstweilige Anordnung erwirken. Mit dieser soll sichergestellt werden, dass die Bundesregierung die seit Monaten angekündigte aber immer wieder verschobene Abschaffung des Solardeckels umgehend umsetzen muss.
Es ist offen, ob die Beschwerde tatsächlich Erfolg hat. Denn der Ball liegt derzeit im Bundestag. Dort hat der zuständige Wirtschafts- und Energieausschuss schon die Beseitigung des Förderstopps für neue Solaranlagen beschlossen. Doch zur Abstimmung steht das Thema noch längst nicht. „Mit der Verfassungsbeschwerde zieht die Solarbranche die Reißleine am Rettungsschirm, um in letzter Sekunde den Aufprall zu verhindern”, begründet Carsten Körnig, Hauptgeschäftsführer des BSW Solar, die jüngste Brancheninitiative.
BSW Befürchtet Halbierung der Nachfrage
Denn sollte der Solardeckel nicht vor der Sommerpause des parlamentarischen Systems in Berlin abgeschafft werden, rechnet der BSW Solar mit einer Halbierung des Solarmarktes. Schon eine vorübergehende Förderunterbrechung würde massive Schäden in der Solarwirtschaft verursachen. Vor allem die Investitionen in große, gewerbliche Solaranlagen mit einer Leistung von mehr als zehn Kilowatt wird durch den Wegfall der Sicherheit durch die Einspeisevergütung zu einem großen Teil wegbrechen. Die Marktanalysten von EuPD Research rechnen hier mit einem Rückgang um ein Drittel im Vergleich zum Vorjahr.
Solarbranche könnte sich noch übers Jahr retten
Die Bonner Marktforscher haben für ihre Analyse zwei Szenarien betrachtet – eins mit und eins ohne Solardeckel. Im Ergebnis gehen sie davon aus, dass in diesem Jahr Photovoltaikanlagen mit einer Gesamtleistung von 3,1 Gigawatt installiert werden – in beiden Szenarien. Denn einerseits geht mit Solardeckel die Nachfrage nach großen Photovoltaikanlagen zurück. Doch die Nachfrage nach schnell geplanten und aufgebauten kleinen Anlagen mit einer Leistung von bis zu zehn Kilowatt wird in diesem Jahr auch mit Solardeckel um ein Drittel steigen.
800 Megawatt für das nächste Jahr prognostiziert
Der Zusammenbruch kommt dann aber im nächsten Jahr, sollte es keine Einspeisevergütung für neue Solaranlagen geben. Dann wird die Zubau von Aufdachanlagenleistung insgesamt auf 800 Megawatt zurückgehen, prognostizieren die Bonner Marktforscher. Das wäre dann sogar ein Rückgang um 80 Prozent. Zum einen werden kaum noch Gewerbebetriebe in die Photovoltaik investieren. Zum anderen wird die Leistung der einzelnen Anlagen – auch bei Privatpersonen – sinken, um den Eigenverbrauchsanteil zu erhöhen und damit die Wirtschaftlichkeit des Generators über die eingesparten Stromkosten zu sichern.
Marktwachstum nur ohne Solardeckel
Sollte der Solardeckel wegfallen, wird der Zubau im Jahr 2021 hingegen auf 4,1 Gigawatt ansteigen. Hier spielt neben der Investitionssicherheit auch ein Nachholeffekt aufgrund der Coronakrise in diesem Jahr eine Rolle. „Der Fortbestand des Solardeckels kommt demnach einer Bankrotterklärung der deutschen Energiewende gleich”, fasst Martin Ammon, Geschäaftsführer von EuPD Research, die Ergebnisse der Untersuchung zusammen. „Die Verzögerungspolitik der Bundesregierung vernichtet Arbeitsplätze und einzigartiges Know-How einer Schlüsselbranche für eine nachhaltige Zukunft.”
German Federal Government doubles bonus for electric cars
By the end of 2021, buyers of electric cars are to receive a subsidy of 6,000 euros. This is one of the measures in the federal government's economic recovery package.
It was a difficult birth. After two days of negotiations, the key points with which the German Federal Government intends to compensate for the economic imbalance caused by the corona pandemic have finally been determined. For example, Berlin wants to help car manufacturers to switch to electric mobility. For this reason, an investment subsidy of 6,000 euros will be available in the form of an eco-rebate, limited until the end of 2021, for electric vehicles with a list price of up to 40,000 euros. This would double the current support for the change to electromobility. The controversial purchase premium for yesterday’s engine technology is off the table. There will be no „cash-for-clunkers“ bonus for the purchase of cars with diesel and petrol engines.
France has presented
Germany is thus following the example of France. For weeks now, President Emmanuel Macron has been planning to make the domestic car manufacturers Renault and PSA the leading providers of electric mobility in Europe. This is to be achieved with a financial injection of eight billion euros.
Money for the charging infrastructure
In addition, the German Federal Government is providing a package with a size of 2.5 billion euros. On the one hand, this is intended to accelerate the expansion of the charging infrastructure. On the other hand, the money will flow into research and development, for example in the production of battery cells. The German government is investing a further two billion euros in the supply chain of car production to make it fit for the future, which is based on the electric car. The car manufacturers themselves also benefit from this money in order to stem the electrification of individual traffic.
Lower Renewable Energy Sources Act (EEG) levy
The economic recovery package also provides relief for electricity customers. Part of the money from this package is to go towards reducing the EEG levy. This would lower the end customer price. However, this is met with divided opinion in the industry. On the one hand, renewables are getting out of the firing line a bit because they are no longer being defamed as cost drivers. On the other hand, it is just the high electricity prices that make the switch to self-consumption of solar power all the more economical. (su)
The Movie Theatre on the Solar Age website has grown. Now the videos of the PV Guided Tours at this year's trade fair The smarter E Europe are online.
Also this year the editorial staff of the professional journal photovoltiak organized PV Guided Tours to the novelties at the trade fair The smarter E Europe in Munich. For the first time, a tour also led to the hotspots of building-integrated photovoltaics, which was carried out by the editorial staff of Solar Age – accompanied by a video team.
Now the videos with the novelties are online at Solar Age. Interested people who missed the fair in Munich or who want to have a look at the details of the individual products can find them in our Movie Theatre – in German as well as in English. All stations of the BIPV-Tour are included. Besides Avancis, Sunman, Solaxess and Solarnova, Solar Age are also represented here.
The architecture portal was part of the joint booth of Allianz BIPV. In addition, some videos of the other tours are available, which are also relevant for architects, builders and planners of building-integrated photovoltaic systems. These include Almaden’s double glass modules, Contec, the provider of green roofs in combination with solar systems, and Clickcon’s new solar carport. (su)
Roof integration with Solrif: Optimal for new buildings and roof refurbishments
Integrating solar modules into the roof has not only aesthetic advantages for new buildings. The solution is also suitable for existing buildings - especially when the maximum possible weight reserve of the roof structure has been reached.
The integration of solar modules into roofs has not only aesthetic advantages. More and more homeowners are realizing them, especially when they build new homes or renovate the roof. Because in all cases, the house owner saves on the roof tiles and their installation. This makes them even more economical compared to normal roofing with an additional photovoltaic system.
Lighter than a tiled roof
An in-roof solution also reduces weight by replacing the roof tiles. „Because with an in-roof system, the entire roof covering consists of just the module, the additional weight of the roof tile is missing in the case of an installation with an on-roof solution“, explains Helge Hartwig, sales manager at Ernst Schweizer AG. The company has had the proven Solrif in-roof system in its portfolio for more than 20 years and has gained a lot of experience with roof integration.
For example, if the house owner covers his roof with a glass-foil module weighing between 18 and 19 kilograms, the weight per square meter is around twelve kilograms. „Roof tiles alone can be considerably heavier, especially if they are made of clay or other high-quality bricks“, emphasizes Hartwig. „Added to this is the weight of the roof-mounted system, which means that the weight on the roof structure can be twice to three times that of an in-roof system“.
Especially in existing buildings, where the load reserve of the roof structure has already been reached, it is still possible to install solar modules thanks to the Solrif system. The photovoltaic modules with the Solrifsystem simply replace the heavy roof tiles and take over their function.
Use existing roof structures
Therefore the Solrif in-roof solution is also well suited for existing buildings. Because of its lower weight, the system can also be installed on existing roof structures. Finally, the Solrif modules are mounted directly on battens that are adapted for them. An additional mounting system for the modules is not necessary. The counter battens do not usually need to be replaced. „The modules can also be installed on existing roof structures“, Hartwig says. „When buildings are very old, it is more a question of the condition of the roofing film, which may need to be renewed or replaced.“ In addition, the Solrifsystem also tolerates deviations in the horizontal and vertical directions, so that older roof structures are also suitable.
Helge Hartwig explained further details in the webinar „Roof integration with Solrif – A proven system for modern optics“, which you can find on the landing page of the Solrif in-roof system from Ernst Schweizer AG. (su)
Hamburg district is completely supplied with renewables
Both the heat and electrical energy of a new quarter in the north of Hamburg will be produced exclusively from renewable sources. The energy concept is based on a decentralised supply.
Hinter der Lieth is the name of a new residential neighbourhood in northern Hamburg. Energienetz Hamburg and the green energy provider Naturstrom have equipped this new residential quarter with a decentralized energy concept. This is based exclusively on the use of renewable energies. A biogas-powered combined heat and power unit (CHP) with a thermal power of 47 kilowatts supplies the 78 residential units with heat. The energy generated by the CHP is distributed via the district’s own heating network. A peak load boiler, which is also fuelled by biogas, is installed for particularly cold days. This enables the project participants to provide room heating and hot water in a completely carbon-neutral way.
Solar power for the tenants
In addition, the cogeneration plant with an electrical power output of 20 kilowatts generates electricity that is used on site. On top of this, there are photovoltaic systems installed on the roofs of three of the six residential buildings in the neighbourhood. Together, they achieve a power output of 120 kilowatts and supply 48,000 kilowatt hours of clean solar electricity every year. Together with the electrical energy from the cogeneration plant, Naturstrom offers this green energy to the households as tenant electricity. The resonance is great. According to the project partners, 80 percent of the apartments occupied so far already use this offer.
Utilising potential in the city
With this project, Energienetz Hamburg and Naturstrom want to show that there are many local resources and potentials for decentralized and above all clean power and heat supply with renewable energies, especially in urban areas. „Until now, the energy transition has mainly been a rural restructuring of our electricity supply,“ explains Tim Meyer, CEO of Naturstrom. „In order to further advance climate protection, we must also use renewable energies in the cities and definitely focus more strongly on the heating sector,“ he emphasizes. „The ‚Hinter der Lieth‘ project shows once again how modern life can work with a clean and sector-linked energy supply.“
A decentralised energy system
Finally, energy system transformation is not limited to replacing fossil fuels with renewable electricity. It also includes the transition from the centralised structure of energy supply to a decentralised system. „Many people in Hamburg want to drive forward the energy revolution – not just anywhere, but here in the city,“ says Matthias Ederhofer, founding director of Energienetz Hamburg. „The ‚Hinter der Lieth‘ quarter shows that this not only works technically, but can also be implemented close to the citizens“. (su)
With the acquisition of Opvius last year, the French manufacturer of organic solar films Armor is taking a new path. Together, the companies offer the opportunity to produce organic solar modules completely according to customer specifications.
Armor, the French manufacturer of organic solar films, is entering into the production of free-form solar modules together with its German subsidiary Opvius. Such modules offer architects the opportunity to choose the dimensions and appearance of the solar modules completely independent of any restrictions.
Armor coates, Opvius connects
For this purpose, Armor’s films with the product name Asca are coated with the organic semiconductor material at the French plant in La Chevrolière, a small town on the outskirts of Nantes. This is where the Armor production line is located, which enables the manufacture of very wide films. These are then transported to Kitzingen in Bavaria where they are further processed by Opvius. The subsidiary in Germany engraves and interconnects the films with a laser according to the customer’s wishes.
Tailoring solar modules
In this way, Armor can open up new business opportunities. Because this enables the company to offer even more applications.Finally, organic solar film can now be produced in any shape imaginable. Tailor-made, inventive and unique, or provided with a special design, it gets a high added value, which the designers and architects give to the product, emphasize the project partners.
Scaling achieved
But the cooperation is also a benefit for Opvius. With a production capacity of one million square metres per year, Armor has a sufficiently high scaling to be able to produce the films cost-effectively. „The energy demand in the world is enormous. We have the largest industrial capacity in the world and have been able to stabilise our production process in two years of production,“ underlines Hubert de Boisredon, Managing Director of Armor. „We are thus equipped to produce our organic photovoltaic film Asca on a large scale, so that we can subsequently participate in new markets quickly and flexibly“.
Assembling semi-finished products on site
However, organic photovoltaics is only part of Armor’s business. The company mainly produces thermal transfer foils, which are delivered as semi-finished products and assembled by partner companies. With the acquisition of Opvius last year, Armor wants to extend this so-called co-industrialisation model to the photovoltaic sector, Hubert de Boisredon describes the goal. (su)
Bündnis Bürgerenergie fordert Abschaffung der Sonnensteuer
Das Bündnis Bürgerenergie hat eine Petition gestartet, in der es die sofortige Streichung der EEG-Umlage auf selbst genutzten Solarstrom fordert. Damit soll endlich eine Regelung umgesett werden, die schon längst europäisches Recht ist.
Das Bündnis Bürgerenergien fordert die Abschaffung der EEG-Umlage auf den selbst verbrauchten Solarstrom. Dazu hat die Organisation eine entsprechende Petition gestartet. Alle Bürger, seien es Hauseigentümer oder Mieter, sollen die Möglichkeit bekommen, individuell oder gemeinsam Photovoltaikanlagen zur eigenen Versorgung zu betreiben. Damit hat das Bündnis vor allem die Regelung im Blick, die die Europäische Kommission schon im Jahr 2018 beschlossen hat und die als Richtlinie auch in deutsches Recht umgesetzt werden muss.
Eigenverbrauch treibt den Zubau
Allerdings hat die Bundesregierung dafür drei Jahre Zeit, so dass sämtliche Hürden für den Eigenverbrauch erst im Sommer des Jahres 2021 wegfallen müssen. „Obwohl die EU-Richtlinie bereits am 21.12.2018 im Amtsblatt der EU veröffentlicht wurde, zögert und bremst die Bundesregierung”, schreibt das Bündnis in seinem Aufruf, die Petition zu unterzeichnen. „Alles deutet darauf hin, dass sie den Eigenversorger auch weiterhin hohe Hürden und finanzielle Belastungen zumuten wird. Die Gefahr: Auch in Zukunft sind viele Arten lokaler Eigenversorgung nicht möglich. Eigenversorgung mit lokalem Solarstrom ist der Grundstein für den flächendeckenden Ausbau der Solarenergie. Wir brauchen eine Regelung, die uns dabei hilft, alle geeigneten Flächen voll zu nutzen. Wir müssen jetzt gemeinsam Druck auf die Bundesregierung machen!”
Altanlagen absichern
Die Abschaffung des Hürden für den Eigenverbrauch würde auch der Weiterbetrieb von alten Anlagen möglich, die in den nächsten Monaten und Jahren aus der Förderung durch das EEG herausfallen. Zusätzlich fordert das Bündnis eine entsprechende Anschlussregelung für die Vergütung von Strom, der nicht vor Ort genutzt werden kann. Damit knüpft das Bündnis Bürgerenergien an die erfolgreiche Petition des Solarenergie-Fördervereins (SFV) an. Denn immerhin 120.000 Menschen haben dessen Petition für die Schaffung einer Anschlussregelung für Altanlagen unterschrieben.
Eine Dachhaut aus Solarmodulen ist nicht nur ästhetisch ein Gewinn.Welche Vorteile sie außerdem hat, hat Helge Hartwig, Vertriebsleiter der Ernst Schweizer AG, anhand des Indachsystems Solrif erklärt. Im gemeinsamen Webinar mit photovoltaik und Solar Age hat er auch die Fragen der Teilnehmer beantwortet.
Die Integration von Solarmodulen in die Dachhaut erfreut sich immer größerer Beliebtheit bei den Hauseigentümern. Denn viele beziehen die eigene Stromerzeugung von vornherein in ihre Planungen mit ein. Sie wollen aber immer öfter nicht nur Solarmodule, sondern ein ästhetisch ansprechendes Solardach.
Die Indachphotovoltaik kann sogar den Denkmalschutz überzeugen, der in der Regel Aufdachanlagen ablehnt. „Denn Dachintegration ist anders“, betont Helge Hartwig. „Die Module sind als Teil der Dachhaut angeordnet, sie liegen in der gleichen Ebene wie die sonst verwendeten Dachziegel und können farblich an die Dachumgebung angepasst werden.“
800 Megawatt installiert
Hartwig ist Vertriebsleiter der Ernst Schweizer AG. Das Unternehmen aus Hedingen bei Zürich hat mit dem System Solrif seit über 20 Jahren eine Indachlösung im Portfolio. Diese ist bei der Installation von mehr als 800 Megawatt Solarleistung in Europa zum Einsatz gekommen. Dabei arbeitet die Ernst Schweizer AG mit verschiedenen Modulherstellern wie Aleo Solar, der Sonnenstromfabrik oder Axsun zusammen, die die Paneele mit den speziellen Solrif-Rahmen aus Hedingen herstellen.
Ans Ortsbild angepasst
Inzwischen gibt es sogar Solrif-Projekte mit Modulen, die farblich an die Anforderungen eines historischen Ortsbildes angepasst sind. Die Schweizer können für farbige Module die Solrif-Rahmen in jeder erdenklichen Farbe herstellen, die sich an der Farbe der Paneele orientiert. Prominentes Beispiel ist ein altes Bauernhaus in der Schweiz, das mit terrakottafarbenen Modulen eingedeckt wurde. Das war eine Forderung des Denkmalschutzes. Die Solaranlage sollte farblich das gleiche Erscheinungsbild haben wie die dort sonst üblichen Dachziegel.
Gegenüber Standardmodulen mit Solrif-Rahmen haben die farbigen Module zwar eine etwas geringere Leistung. „Doch die Integration dieser Solarmodule mit dem Solrif in die Dachhaut unterstreicht nochmals sehr deutlich, dass es andere Prioritäten gibt als beim Bau einer Aufdachanlage“, betont Hartwig.
Hier geht es um das Gebäude insgesamt, kombiniert mit einer Lösung, eigenen Strom zu generieren. Schließlich ist bei der Dachintegration die Ästhetik ein sehr wichtiger Aspekt
Für Hinterlüftung ist gesorgt
Die Stromerzeugung wiederum ist der Zusatznutzen. Er macht die Indachanlage zu einem perfekten Beispiel der bauwerkintegrierten Photovoltaik (BIPV). Zudem ist die Indachanlage in vielen Fällen die einzige Lösung, ein Solardach mit Zustimmung des Denkmalschutzes zu errichten. Außerdem produziert das Dach, auch wenn die Anlage mit farbigen Modulen realisiert wird, 100 Prozent mehr Strom als ein Dachziegel. Damit bezahlt sich die Dacheindeckung selbst.
Wenn die Indachanlagen mit Modulen ohne farbige Gläser gebaut werden, liefern sie mindestens die gleichen Erträge wie Aufdachanlagen. Denn die dachintegrierten Module werden genauso gut gekühlt wie die Paneele, die über einer eigentlichen Daheindeckung schweben. „Denn eine echte Kühlung gibt es nur dann, wenn die Hinterlüftungsebene mindestens zehn bis 15 Zentimeter dick ist. Das ist weder bei Aufdach- noch bei Indachanlagen gegeben“, räumt Helge Hartwig mit einem gängigen Vorurteil auf.
De gesamten Beitrag lesen Sie im aktuellen Heft des Fachmagazins potovoltaik. Abonnenten lesen alle Beiträge auch online.
Photovoltaics as a building material is only slightly different from conventional building materials for the building envelope in terms of prizing. In some cases it is even cheaper, analyzed BIPV Boost.
The industry and research consortium BIPV Boost has been set up to reduce the costs of building-integrated photovoltaics, among other things. In a first interim report the current state of competitiveness of building integrated solutions compared to the non-active building envelope was summarized.
Solar roofs are becoming less expensive
Thus, the fundamental price reduction of photovoltaics in recent years has led to a reduction in the cost of solar building skin. In the meantime, roof-integrated solar systems can keep up with conventional slate roofing and ceramic roof tiles in terms of costs. Some of the in-roof systems are now even cheaper than such high-quality roof coverings. However, they are still slightly above the cost of cheaper concrete roof tiles or metal roofing. In the case of the solar roof tiles, however, the authors of the study found a large price difference compared to conventional roof coverings.
BIPV façades with a wide price range
Even as a façade material, photovoltaics can easily keep up with high-quality materials such as stone. In some cases, solar façades are less expensive than some stone façades. However, when it comes to cheaper building materials such as metal, ceramics, concrete or wood, photovoltaics is still slightly above conventional solutions. But the price difference becomes smaller. For example, the price range for metal façades is around 50 to 130 euros per square meter. A façade with crystalline modules currently costs on average between about 180 and 450 euros per square metre. The authors of the study explain this large range with the various possibilities offered by photovoltaics. This is because the study included both cheaper standard modules as façade material as well as special designs made to customer specifications. The latter are of course more expensive due to the additional work involved in design and the small number of units in production.
Consider the complete system
However, the price differences become smaller if not only the material costs but also the so-called end customer costs are taken into account. Here, the costs for the fastening system, the potential accessories, the planning and installation work and the administrative expenses are also taken into account. „Still, active solutions remain undoubtedly more expensive than standard façade cladding solutions.“ write the authors of the study.
The same can be said of cold façades such as curtain-type ventilated façades. Here the conventional solutions on the material level are still cheaper than the active façade. On the system level, solar façades are in some cases even cheaper than the conventional solution.
BIPV generates income and has advantages
The authors have also contrasted the costs with the revenues. Thus, an active building envelope produces energy, which is an advantage over the passive building envelope and is included in the overall calculation. There are also other advantages. „One can for example mention the aesthetic value, as BIPV products are construction elements which can have different shapes and colours. More importantly, the ‚green‘ status attached to the BIPV system is often evoked as a source of value creation“, the authors write in their study. „Nevertheless, as a building component, BIPV should not be considered as a main source of income but as a supplementary investment that should offer reasonable pay back periods“.
The complete study is available for free download on the BIPV Boost website. (su)
In Switzerland, the jungle of energy and environmental standards for buildings is clearing. Four supporting organisations want to coordinate the calculation of how building owners and architects can achieve the standards.
In Switzerland there are several different labels for the classification of the energy building standard. Each of these labels has a different focus. Four organisations that issue such labels have now announced their intention to cooperate. At least the supporting organisations have already signed a joint declaration of intent, as the Swiss Federal Office of Energy has announced.
Focus on renewables and climate protection
For example, the building energy certificates of the cantons GEAK, the Minergie label, the Swiss Sustainable Building Standard (SNBS Hochbau) and the 2000-Watt-Areale certificate will in future form a common family of building labels. At the heart of this new common standard is that the building should make the greatest possible contribution to the goals of energy and climate policy and sustainable development in Switzerland.
Well-known brands to be continued
In addition, the supporting organisations hope that this will lead to higher demand by clearing the jungle of different standards. In doing so, the well-known and successful brands are to be continued in the market. However, the calculations will be harmonised as to how builders and architects can achieve the specified standards. (su)
Für ihren neuen Firmensitz in Nürnberg will die Umweltbank höchste ökologische Baustandards umsetzen. Sie hat deshalb einen entsprechenden Architekturwettbewerb gestartet.
Die Umweltbank lässt sich in Nürnberg ein neues Unternehmensgebäude errichten. Dieses soll den höchsten ökologischen Standards entsprechen und gleichzeitig ein modernes Arbeitsumfeld bieten, das den Werten des Unternehmens entspricht. Deshalb lobt die Bank einen europaweiten Architekturwettbewerb aus.
Innovative Vorschläge erwartet
Insgesamt 30 Bewerbungen nimmt die Bank entgegen. Davon hat sich von sich aus schon zehn Architekturbüros ausgewählt, die schon über viel Erfahrung beim Einsatz von nachhaltigen Baustoffen, modernen Energiekonzepten und die Nutzung von erneuerbaren Energien gesammelt haben. „Durch den Wettbewerb erwarten wir viele innovative Vorschläge für unseren neuen Firmensitz”, erklärt Goran Bašić, Vorstandsmitglied der Umweltbank. „Unser Ziel ist es, ein ökologisches Vorzeigeobjekt zu schaffen, welches die Marke Umweltbank ganzheitlich widerspiegelt”, betont er. Die Bank strebt mit dem Gebäude das bestmögliche Rating der Deutschen Gesellschaft für nachhaltiges Bauen (DGNB) an.
Preisgerichtssitzung ist am 7. Oktober
Insgesamt soll das Gebäude eine Nutzfläche von 11.000 Quadratmetern umfassen. Die Bank wird allerdings nicht die gesamte Fläche belegen. Einen Teil der Büro- und Einzelhandelsfläche wird sie vermieten. Das Gebäude entsteht in einem neuen Stadtquartier in Nürnberg, für das das Bebauungsverfahren bereits eingeleitet ist. Die Bewerbungsunterlagen für den Wettbewerb finden Sie auf der Internetseite des Architekturbüros Kohler Grohe, das die Verfahrensbetreuung und Vorprüfung übernommen hat. Die Preisgerichtssitzung findet am 7. Oktober 2020 statt. (su)
Dieter Moor von Ertex Solar: Die BIPV erfährt eine leichte Steigerung
Ertex Solar im niederösterreichischen Amstetten hat sich auf die Produktion von Modulen nach Wünschen von Architekten und Bauherren spezialisiert. Im Gespräch erklärt Vertriebsleiter Dieter Moor, Geschäftsführer von Ertex Solar, wie sich die Nachfrage entwickelt und was notwendig ist, um den Markt zu beleben.
Ertex Solar ist im vergangenen Jahr ein Teil eines neuen Mutterunternehmens. Wie hat sich das auf das Projektgeschäft ausgewirkt?
Die Auswirkungen des neuen Mutterunternehmens Vinci Construction sind im Projektgeschäft dadurch merkbar, dass vermehrt Projekte aus Frankreich angefragt und realisiert werden.
Wie sehen die Vertriebskanäle für kundenspezifisch angefertigte Module aus?
Derzeit sehen die Vertriebskanäle für kundenspezifisch gefertigte Module folgendermaßen aus: Im häufigsten Fall kontaktieren uns die Architekten, aber auch Bauherren fragen oft selbst Projekte mit BIPV an. Des Weiteren fertigen wir auch für Fassadenbauer beziehungsweise Metallbauer Module.
Wie entwickelt sich derzeit die Nachfrage nach Modulen für die bauwerkintegrierte Photovoltaik?
Die Nachfrage nach bauwerkintegrierter Photovoltaik erfährt derzeit eine leichte Steigerung. Nicht zuletzt, weil durch das Thema Fridays for Future der Klimaschutz wieder mehr in den Fokus rückt und nach nachhaltigen Optionen gesucht wird. BIPV 4 Future wäre auch in diesem Falle ein passender Leitspruch.
Wie müssten sich die Rahmenbedingen ändern, damit die BIPV öfter angewendet wird?
Das Bewusstsein für nachhaltige Aspekte in der Gebäudearchitektur müsste auf alle Fälle bei Architekten und Bauherren geschärft werden. Im Prinzip könnten bei allen Projekten, wo Glas verbaut werden soll, stattdessen auch die Glas-Module von Ertex Solar verbaut werden. Oftmals ist das Bewusstsein für diese Option aber noch nicht vorhanden, weshalb hier definitiv noch Handlungsbedarf besteht.
Wer fragt bei Ihnen in den letzten Monaten nach Modulen für Solarfassaden oder Überkopfverglasung nach – geht das Engagement für die BIPV eher von den Architekten oder eher von den Bauherren aus?
Eigentlich bekommen wir von Architekten und Bauherren gleichermaßen Anfragen für Solarfassaden oder Überkopfverglasungen.
Kommen die Module von Ertex Solar vor allem im Neubau zum Einsatz oder gibt es auch Sanierungsprojekte, die mit Solarfassaden ausgestattet werden?
Die Module kommen vermehrt im Neubau zum Einsatz. Dies könnte beispielsweise daran liegen, dass hier den Bauherren und Architekten noch mehr Gestaltungsfreiraum zur Verfügung steht. Bei Sanierungsprojekten gibt es oft strengere Vorgaben, die dann für die Bauherren oft eine Hürde darstellen, wieso nicht auf BIPV zurückgegriffen wird.
Welche technologischen Trends wie beispielsweise Farbe oder Zelltechnolgien kristallisieren sich in den letzten Monaten heraus und haben diese sich im Vergleich zu den vergangenen Jahren verändert?
In letzter Zeit kann eine verstärkte Nachfrage nach homogenen Modulen, bei denen die Bus Bars nicht sichtbar sind, verzeichnet werden. Außerdem werden teilweise Anfragen nach Modulen mit einer farbigen Frontscheibe gestellt.
Ein Alleinstellungsmerkmal von Ertex war bisher die Möglichkeit, sehr große Module zu produzieren. Dazu wurde unter anderem auch der Autoklav von Ertl Glas genutzt. Ist das immer noch möglich und bis zu welchen Größen können Sie Module anbieten?
Auf den Autoklav von Ertl Glas musste erst einmal bei der Produktion von Modulen mit Maßen von drei mal 4 Metern zurückgegriffen werden. Ansonsten wird der hauseigene Autoklav von Ertex Solar bei der Produktion von Modulen mit Größen von maximal 2,4 x 5,1 Metern genutzt, weshalb die Produktion von Modulen mit Übergröße auf alle Fälle noch ein Alleinstellungsmerkmal von Ertex Solar ist.
Wie groß ist die Nachfrage nach solchen sehr großen Modulen?
Speziell bei Parkplatzüberdachungen sind Module von Größen bis zu fünf Metern äußerst gefragt – unter anderem aufgrund der Tatsache, dass bei Modulen in dieser Größe die Anzahl der Stoßfugen minimiert werden kann. Derzeit befinden sich verschiedene Projekte in der Abwicklung, darüber können Interessierte aber mit Sicherheit in näherer Zukunft weitere Details auf unserer Homepage beziehungsweise auf unseren Social-Media-Kanälen nachlesen.
Wie entwickeln sich denn die Preise für die BIPV – sinken die gleichmäßig mit den Photovoltaikpreisen oder wirken da andere Mechanismen? Die Preise für die BIPV sind derzeit eher stabil, die Kosten für die Zelle selbst machen im Grunde nur noch einen Bruchteil des Gesamtpreises aus. Der Großteil besteht aus den Kosten für Engineering, Material wie dem Glas oder der Folie und natürlich dem Produktionsaufwand.
Die Fragen stellte Sven Ullrich.
Beispiele der Möglichkeiten, die Architekten mit den Modulen von Ertex Solar haben, finden Sie in der Projektdatenbank von Solar Age.
Solar prizes 2020 – Eurosolar welcomes applications
Eurosolar is receiving nominations for the German and European Solar Prize until 31 May and 1 July 2020. The winners will be awarded at the end of this year.
This year, Eurosolar will again award prizes for outstanding photovoltaic projects as well as ideas, business models and social commitment to the use of solar energy. The solar prizes are announced in various categories. In addition to groundbreaking solutions and applications in solar architecture and urban development, the awards will also be given to projects and concepts that promote the energy transition in cities and communities.
Projects and initiatives for the transformation of industry, commercial enterprises and agriculture as well as in logistics and the transport sector will also be honoured. In addition to associations and communities, people who have contributed to the promotion of the use of solar energy not only in Europe but also worldwide will be honoured. There is also a media prize and a prize for special education and training concepts relating to renewable energies.
Subscribe online now
In addition to architects, planners and installers, the competition is open to municipalities, cities, municipal and private companies, associations, organizations and cooperatives as well as journalists and citizens who support the energy revolution. A qualified jury will select the best projects, ideas and solutions from the applications. The winners will be duly honoured at a ceremony at the end of this year.
Eurosolar accepts applications for the German Solar Prize until 31 May 2020. Applicants for the European Solar Prize must submit their documents by 31 July 2020 if they wish to participate. Applications can be submitted quickly and easily online. The specific conditions of participation and application documents for the German and European Solar Prize can be found on the Eurosolar website. (su)
Vor 100 Jahren begann Ernst Schweizer in Hedingen bei Zürich als eigenständiger Bauschlosser. Inzwischen ist es ein großer Zulieferer der Bau- und Solarbranche. Solar Age gratuliert zum Jahrhundertjubiläum.
Die Ernst Schweizer AG wird 100 Jahre alt. In der Solarbranche ist sie vor allem als Hersteller von Montagesystemen für Photovoltaik- und Solarthermieanlagen bekannt. Architekten und die Baubranche kennen das Unternehmen zusätzlich als Lieferant von Fassadensystemen, Holz- und Metallfenstern, Falt- und Schiebewänden und Briefkästen.
Von der Wärme zum Strom
Angefangen als einfache Bauschlosserei 1920 in Hedingen bei Zürich, hat sich das Unternehmen inzwischen zu einem Zulieferer für die Baubranche mit 450 Mitarbeitern entwickelt. Seit 1977 ist die Ernst Schweizer AG in der Solartechnik unterwegs. Zunächst produzierte das Unternehmen ausschließlich thermische Solarkollektoren, die auch heute noch Abnehmer finden. Doch mit der Entwicklung der Photovoltaik brachten die Schweizer die ersten Montagesysteme für die Module auf den Markt.
Ästhetik soll nicht zu kurz kommen
Dabei sollte die Ästhetik aber eine wichtige Rolle spielen. Deshalb entwickelten die Ingenieure in Hedingen das Indachsystem Solrif – im Einführungsjahr 1999 eines der ersten solcher Systeme auf dem Markt. Damit wurden inzwischen Dächer mit mehr als 800 Megawatt Solarleistung eingedeckt. Für Bestands- und Flachdächer gibt es aber auch Systeme zur Aufdachmontage von Modulen.
Parallel zum 100jährigen Jubiläum hat mit Samuel Schweizer die vierte Generation die Leitung des Familienunternehmens übernommen. Er will vor allem die Solarsparte weiter auszubauen, da der Bereich boomt und mittlerweile ohne Subventionen konkurrenzfähig ist. (su)
Weitere Details über das Montagesystem Solrif erfahren Sie im Webinar, das Solar Age zusammen mit der Redaktion der photovoltaik und der Ernst Schweizer AG durchgeführt hat. Sie finden die Aufzeichnung auf der Internetseite des Solrif.
The Photovoltaics Technology Platform has awarded prizes to solar buildings in the Alpine Republic or with Austrian participation. The second BIPV awards were presented to projects that demonstrate very different solutions for solar façades and modern energy concepts.
The Austrian Technology Platform Photovoltaics (TPPV) has for the second time awarded outstanding projects of building-integrated photovoltaics. The central prerequisite for participation – and thus also for nomination – was that the project must either be located in the Alpine Republic or be realised with Austrian participation.
Wind power operator works behind solar façade
From the 22 projects submitted, the independent jury, consisting of architects and BIPV specialists, awarded three winners and two additional nomination certificates. One BIPV award went to the Viennese architectural office Reinberg. With the company building of the wind power operator Simonsfeld in Ernstbrunn in Lower Austria, BIPV designed a building with a very special aesthetic. This is because the solar modules extend over the entire façade of the main building. In the lower two levels they are partly designed as movable sun protection. Together with the modules on the flat roofs, they cover the entire energy requirements of the building including heating, cooling and e-mobility.
Solar façade promotes acceptance
A project by Rene Schmidt Architects from Zurich also received an award. The façade of the award-winning apartment building in Zurich was constructed entirely with light-grey solar modules from Kioto Solar in St. Veit/Glan.They are integrated like individual skin flakes that overlap downwards and to the sides, thus creating a very special visual effect. For the jury, this is an example of how the acceptance of solar technology can be increased in urban areas.
Multi-family house built with solar façades
With a solar apartment building in Wetzikon, Switzerland, Arento Architects received a nomination certificate. The modules from Ertex Solar in Amstetten with different sizes form the outer shell of the building on the south-east and south-west sides. As semi-transparent modules, they are also integrated into the balcony parapets, giving the building a unique appearance. On the north side, the façades were constructed with pre-greyed wooden formwork.
Solar-powered refrigerated warehouse
The Innsbruck architectural office Seelos has also received a BIPV award for an intelligent combination of design and energy concept. Because with the full-surface cladding with solar modules, the architects have not only given a deep-freeze hall by Mpreis in Völs, Tyrol, a modern look. The jury was also impressed by the ideal match between energy production and energy consumption.
Solar high-rise building shows standard of the future
The refurbished office building of the Austrian Social Insurance Association in Vienna shows the energy standard of the coming years. This is because the opaque parts of the post-and-beam façade of the high-rise building from the 1970s were completely fitted with solar modules as part of a renovation project. In combination with the good thermal properties achieved with the refurbishment, the building now meets the passive house standard. (su)
Further innovative examples of how the solar activation of the building envelope realizes a modern energy concept you can find in the project database of Solar Age.
The Senate of the Austrian capital makes the installation of solar systems an obligation when a new building is constructed in the city. If this is not possible or not economical, there are substitute regulations.
The City Government of Vienna has presented an amendment to the building code introducing the general mandatory installation of photovoltaic systems. So far, only new public buildings have to be equipped with solar systems. This principle is now being extended to all new buildings.
When the draft law presented by the building councillor Kathrin Gaál (SPÖ) is approved, photovoltaic modules with an power output of at least one kilowatt per 100 square metres of usable area must be installed on all newly constructed non-residential buildings. For new residential buildings, the following then applies: They have to be equipped with at least one kilowatt of photovoltaic power output per 300 square metres of conditioned total area.
Exceptions must be justified
If the installation of a solar system on a residential building is not possible for technical or economic reasons, the owner can also install another power generation system. The precondition is that it is operated with renewable energies. If this is also not possible, he can be completely exempted from the solar obligation. However, he must then explain this in a comprehensible manner.
Finding substitute area
Developers of commercial and industrial real estate or of municipal buildings that are not used for residential purposes can also deviate from the solar obligation. However, this is only permitted if the installation of a photovoltaic system or other green electricity system is technically not possible or not economically viable. In this case, however, the builder-owner must install a solar system with the Power output that would be required for his building on other suitable area. This substitute area must be located within Vienna.
Charging points become mandatory too
At the same time, the City Council amends the Vienna Garages Act. In future, every new non-residential building must be equipped with charging points for electric cars. The prerequisite is that the building must have more than ten parking spaces for cars. Then it must be possible to charge an electric car on every tenth parking place. Empty piping must be laid for every fifth parking place so that a charging point can be installed later.
Preparing the installation
All garage parking spaces in new residential buildings must be prepared at least for the installation of a charging station. For this purpose, the building owner must have a corresponding empty piping system installed. Here, too, the prerequisite is that at least ten parking spaces are installed.
The charging station requirement applies to all types of buildings if an existing building is extensively renovated and the measures involve at least 25 percent of the building envelope. The obligation also applies to the renovation of the building’s electrical system. In both cases it is irrelevant whether the parking spaces are in the building – for example in an underground car park – or directly adjacent to the building.
The new regulations are not yet in force. However, the city council has already started a consultation procedure. The magistrate will accept comments until 18 May 2020. (su)
Der Kongress der urbanen Energiewende wird in diesem Jahr digital durchgeführt. Neben Vorträgen finden auch Diskussionsveranstaltungen statt. Sogar virtuelle Kaffeepausen sind geplant.
Der Veranstalter der Energietage, die jährlich im Frühjahr in Berlin stattfinden, muss aufgrund der Coronakrise auf einen großen Kongress verzichten. Doch die Veranstaltung findet trotzdem statt – als digitaler Sommer der Energiewende. Bisher steht das Programm für den virtuellen Großkongress nicht endgültig fest. Doch schon jetzt ist klar, dass beginnend am 26. Mai 2020 in den darauf folgenden vier Wochen an insgesamt acht Tagen etwa 50 digitale Veranstaltungen stattfinden. Die Bandbreite reicht von Vorträgen und Podiumsdiskussionen über eine Speaker‘s Corner bis hin zu interaktiven Workshops. In virtuelle Kaffeepausen haben die Teilnehmer die Möglichkeit, miteinander in Kontakt zu kommen.
Schwerpunkt: Erneuerbare im Gebäude
In den verschiedenen Veranstaltungen können sich die Teilnehmer nicht nur über die neusten Rahmenbedingungen und technischen Lösungen hinsichtlich der Nutzung von erneuerbaren Energien in Gebäuden – sowohl in Form von Strom als auch von Wärme – informieren. Sie erfahren auch, wie die Energiewende bei der Planung von Quartieren hin zur Klimaneutralität umgesetzt werden kann. Weitere Schwerpunkte sind die Dezentralisierung der Energieversorgung mit Erneuerbaren, der Klimaschutz und die Enerigeeffizienz im Gewerbe und in der Industrie sowie Informationen über die Modellregion Berlin-Brandenburg.
Der digitale Sommer der Energiewende findet am 26. und 27. Mai sowie am 3., 4. 9., 10. 16. und 17. Juni 2020 statt. Das vollständige Programm finden die Interessenten spätestens ab Mitte Mai auf der Internetseite der Berliner Energietage. (su)
Mieterstrom ist eine gute Möglichkeit, die Energie aus einer Solarfassade oder von einer Photovoltaikanlage auf dem Dach von Mehrfamilienhäusern vor Ort zu nutzen. Wenn zusätzlich noch Elektroautos geladen werden, steigt der Eigenverbrauch und es sinken die Stromkosten für alle Bewohner.
Immer mehr Bauherren von Mehrfamilienhäusern planen von vorn herein die Photovoltaik mit ein. Doch sie stehen oft vor der Frage, was sie mit dem Strom machen sollen, der von den Solarmodulen in der Fassade oder im Dach geliefert wird.
Doch gerade im Mehrfamilienhaus ist die Nutzung des Stroms vor Ort eine Möglichkeit, die Solaranlage über die eingesparten Kosten für den Strom aus dem Netz zu refinanzieren. Denn hier sind die Lastprofile flacher als im Einfamilienhaus, wo der meiste Strom in den Morgen- und Abendstunden verbraucht wird. Im Mehrfamilienhaus verteilt sich die Stromnutzung besser über den gesamten Tag, auch wenn immer noch der größte Teil der Last dann anfällt, wenn die Bewohner von der Arbeit nach Hause kommen oder bevor sie zur Arbeit gehen.
Viel Strom vor Ort verbrauchen
Ein Mieterstromprojekt wird dann erfolgreich, wenn möglichst viel Strom vor Ort verbraucht wird. Denn der selbst erzeugte Solarstrom ist schon längst preiswerter als der Strom aus dem Netz. Der Weg, den Verbrauch vor Ort anzukurbeln, demzufolge führt über Stromverbraucher, die dann laufen, wenn die Bewohner des Mehrfamilienhauses unterwegs sind. Voraussetzung ist, dass es sich bei diesen zusätzlichen Stromverbrauchern um Geräte handelt, die ohnehin Energie verbrauchen würden. Neben Wärmepumpen und Elektroheizungen bieten sich hier Elektroautos an. „Wie stark der Einfluss von Ladestationen auf den Direktverbrauch ist, hängt dabei von der Anzahl der Ladestationen und den Elektroautos der Bewohner ab sowie von ihren Ladezeiten”, erklärt Florian Henle, Geschäftsführer des Ökoenergieversorgers Polarstrom.
Nötige Anschlussleistung planen
Das Unternehmen hat sich auf die Umsetzung von Mieterstromprojekten spezialisiert. Wenn die Ladestationen in den Gebäuden installiert und mit Solarstrom versorgt werden, sollte das vor allem beim Neubau oder bei der Sanierung erfolgen. Denn dann kann die erforderliche Netzanschlussleistung gleich mit geplant werden. Schließlich laden die Elektroautos in der Regel nicht ausschließlich mit Solarstrom.
Lastmanagement installieren
Polarstrom rät zusätzlich zu einem Lastmanagement. Denn nur damit lasse sich eine faire Stromversorgung der Bewohner und der Ladestationen mit dem erzeugten Solarstrom zu gewährleisten. Typischerweise werden dabei zunächst die Haushalte mit Solarstrom versorgt. Erst wenn die Solarmodule mehr Strom erzeugen als sie verbrauchen, kann dieser Überschuss in die Akkus der Elektroautos fließen.
Elektroautos als Stromspeicher nutzen
Die Attraktivität von Ladestationen im Mieterstrom steigt zusätzlich, wenn bidirektionales Laden möglich ist. Dann können die Elektroautos der Bewohner als Speicher genutzt werden. Denn dann können die Akkus der Elektroautos den Überschussstrom aus der Solaranlage des Gebäudes zwischenlagern und bei Bedarf wieder ins Hausnetz einspeisen. Das würde die Stromautarkie der Bewohner unterstützen und die Stromkosten weiter senken, betont Polarstrom. (su)
Der Senat der österreichischen Hauptstadt macht die Installation von Solaranlagen zur Verpflichtung, wenn ein neues Gebäude in der Stadt errichtet wird. Außerdem müssen sie mit Ladesäulen für Elektroautos ausgestattet werden.
Der Stadtrat von Wien hat eine Novelle der Bauordnung vorgelegt, mit der er die allgemeine, verpflichtende Installation von Photovoltaikanlagen einführt. Bisher müssen nur neue öffentliche Gebäude mit Solaranlagen ausgestattet werden. Dieses Prinzip wird jetzt auf alle Neubauten ausgeweitet.
Wenn der Gesetzentwurf durchgeht, den die Baustadträtin Kathrin Gaál (SPÖ) vorgelegt hat, müssen auf allen neu errichteten Nichtwohngebäuden Photovoltaikmodule mit einer Leistung von mindestens einem Kilowatt pro 100 Quadratmeter Nutzfläche installiert werden. Für neue Wohngebäude gilt dann: Sie müssen mit mindestens einem Kilowatt Photovoltaikleistung pro 300 Quadratmeter konditionierter Bruttogrundfläche ausgestattet sein.
Ausnahmen müssen begründet sein
Sollte aus technischen oder wirtschaftlichen Gründen die Installation einer Solaranlage nicht möglich sein, kann der Bauherr auch eine andere Stromerzeugungsanlage installieren. Voraussetzung ist, dass sie mit erneuerbaren Energien betrieben wird. Sollte auch das nicht möglich sein, kann er komplett von der Solarpflicht befreit werden. Das muss er dann aber nachvollziehbar darlegen.
Ersatzfläche finden
Auch die Entwickler von Gewerbe- und Industrieimmobilien oder von städtischen Gebäuden, die nicht dem Wohnen dienen, können von der Solarpflicht abweichen. Das gilt aber nur, wenn die Installation einer Photovoltaikanlage oder einer anderen Ökostromanlage technisch nicht möglich oder nicht wirtschaftlich ist. Dann muss der Bauherr aber eine Solaranlage mit der Leistung, die für sein Gebäude geboten wäre, auf anderen geeigneten Grundstücken errichten. Diese Ersatzfläche muss innerhalb von Wien liegen.
Ladesäulen werden Pflicht
Gleichzeitig ändert der Stadtrat das Wiener Garagengesetz. In Zukunft muss jedes neue Nichtwohngebäude mit Ladepunkten für Elektroautos ausgestattet werden. Voraussetzung ist, dass das Gebäude über mehr als zehn Stellplätze für Autos verfügt. Dann muss das Laden eines Elektroautos auf jedem zehnten Stellplatz möglich sein. Für jeden fünften Stellplatz muss eine Leerverrohrung verlegt werden, damit nachträglich ein Ladepunkt installiert werden kann.
Installation vorbereiten
Alle Garagenstellplätze neuer Wohngebäude müssen mindestens für die Installation einer Ladestation vorbereitet werden. Dazu muss der Bauherr eine entsprechende Leerverrohrung verlegen lassen. Auch hier ist die Voraussetzung, dass mindestens zehn Stellplätze errichtet werden.
Die Ladesäulenpflicht greift für alle Arten von Gebäude, wenn ein Bestandsgebäude umfangreich renoviert und die Maßnahmen dabei mindestens 25 Prozent der Gebäudehülle betreffen. Die Verpflichtung gilt ebenfalls bei der Sanierung der Hauselektrik. In beiden Fällen ist es dabei unerheblich, ob die Stellplätze im Gebäude sind – etwa in einer Tiefgarage – oder direkt an das Gebäude angrenzen.
Die neuen Regelungen sind noch nicht in Kraft. Der Stadtrat hat aber schon ein Konsultationsverfahren gestartet. Bis zum 18. Mai 2020 nimmt der Magistrat Stellungnahmen entgegen. (su)
Roof integration with Solrif: Solar module becomes water-bearing layer
With roof integration, the solar module is given a second task in addition to electricity production. It becomes a water-bearing layer. However, a few tips should be followed in the process.
An in-roof photovoltaic system is a perfect example of building-integrated photovoltaics. Because the solar modules are not only used to produce electricity. They also bring an additional benefit to the building and are therefore an integral part of the building envelope. This is because they also function as roofing. In this way, they replace the actual roof tiles, which provide weather protection on conventional roofs with on-roof systems. They form the water-bearing layer on the roof and, together with the roof structure that is also common for tiles, ensure that everything inside remains dry.
Standard roof pitch 22 degrees
The rules of the roofing trade regarding the roof pitch must be respected. The Solrif system from the manufacturer Ernst Schweizer AG has been tested for a standard roof pitch of 22 degrees within the framework of the usual tests. The usual specifications of the Central Association of the German Roofing Trade (ZVDH) always apply. „This is the same limit as is usual for conventional roof tiles, such as a Frankfurt pantile,“ says Helge Hartwig, Sales Manager of Ernst Schweizer AG.
Ten degree inclination also possible
If the roof pitch is between 10 and 22 degrees, it is necessary to take measures such as those described by the ZVDH for conventional roof tiles. For example, the lower the roof pitch, the more dense must be the underlay or sarking membrane used by the roofer. „With the usual precautions according to ZVDH, no water can enter the building even below this limit“, emphasizes Helge Hartwig. Thus, roofing with the Solrif is also possible up to a roof pitch of up to ten degrees. Usual tiled roofs are generally not flatter anyway. „But since we need exactly the same conditions with the Solrif system as with normal interlocking tiles, the carpenters and roofers already know these specifications and usually know what to do,“ emphasizes Hartwig.
Helge Hartwig explained further details during the webinar „Roof integration with Solrif – A proven system for modern optics“, which you can find on the landing page of the Solrif in-roof system from Ernst Schweizer AG. (su)
Der Solarenergieförderverein Bayern lobt in diesem Jahr den achten Architekturpreis „Gebäudeintegrierte Solartechnik” aus. Interessierte Architekten, Bauherren, Gebäudeeigentümer, Planer und Hersteller von Solaranlagen können sich bis zum 31. Juli 2020 bewerben.
Der Solarenergieföderverein Bayer (SEV) lobt in diesem Jahr bereits zum achten Mal den „Architekturpreis Gebäudeintegrierte Solartechnik” aus. Mit dem Preis will der Verein nicht nur herausragende Lösungen und Projekte im Bereich der bauwerkintegrierten Photovoltaik (BIPV) prämieren. Er will damit auch auf die Möglichkeiten, die Hülle von Gebäuden mit Photovoltaikbauteilen energetisch zu aktivieren.
Sensibilität für das Thema Solarfassade steigern
Denn die Nutzung der Gebäude für die Produktion von Solarenergie ist ein zentrales Thema auf dem Weg zur Klimaneutralität, wie der Verein betont. So sollten Solarfassade und Photovoltaikanlagen, die die Dacheindeckung ersetzen, inzwischen selbstverständliche Bestandteile innovativer Gebäudehüllen wie auch Bausteine energetischer Sanierung sein.
Die architektonische technische Integration von Solarelementen in Fassaden und Dächern hat viele Vorteil, nicht nur für den Hauseigentümer, sondern auch für Architekten. Denn damit gewinnen sie den Gestaltungsfreiraum zurück, den sie mit einer dicken Dämmung nicht haben. Zudem steigere das die Sensibilität für die Verbindung von Gebäude und Solartechnik und verhelfe den regenerativen Energien zu einer weiteren Verbreitung.
Gewinner werden prominent präsentiert
Um solche Ansätze zu unterstützen lobt der SEV den Architekturpreis aus. Er ist mit insgesamt 27.000 Euro dotiert. Der Gewinner bekommt immerhin 15.000 Euro. Weitere 10.000 Euro sind für Anerkennungspreise vorgesehen. Die restlichen 2.000 Euro gehen an eine herausragende studentische Arbeit im Bereich bauwerkintegrierte Photovoltaik. Ausgewählte Projekte werden zudem in einer Wanderausstellung sowie verschiedenen Publikationen präsentiert.
Anlage muss Bestandteil des Gebäudes sein
Um den Preis können sich weltweit alle Architekten, Eigentümer, Betreiber und Solartechnikunternehmen – privat oder gewerblich, industriell oder öffentlich – von mindestens einer Solaranlage bewerben. Dabei kommen sowohl strom- als aus wärmeerzeugende Systeme in die Auswahl. Voraussetzung ist, dass die Anlage ein wesentlicher Bestandteil des Gebäudes ist. Außerdem muss die Anlage zwischen 1. Januar 2017 und 20. Juni 2020 in Betrieb gegangen sein. Als Kriterium gilt hier die nachweisbare erste Energielieferung der Anlage.
Die Teilnahmebedingungen und Bewerbungsunterlagen finden Sie auf der Internetseite des SEV. Sie können diese dorrt auch schriftlich anfordern. Der Verein berücksichtigt dabei nur Bewerbungen, die bis zum 31. Juli 2020 vollständig eingegangen sind. (su)
Fridays for Future hat den geplanten Klimastreik ins Netz verlagert. Dort kann sich jeder beteiligen. Unterstützung kommt aus den Branchen der Erneuerbaren. Denn der Klimaschutz bleibt ein Thema, auf das wir rasch dauerhafte Antworten finden müssen.
Die Coronakrise ist derzeit das beherrschende Thema. Doch die Klimakrise geht nicht ins Homeoffice. Aufgrund der Ausgangsbeschränkungen kann der weltweite Klimastreik, den die Ortsgruppen von Fridays for Future für den 14. April geplant hat, nur virtuell stattfinden. Dazu haben die Organisatoren eine Möglichkeit auf ihrer Internetseite geschaffen, sich an einem digitalen Streik zu beteiligen.
Klimaproteste trotzen Corona
Jeder kann sich dort eintragen und ein Foto seiner ganz persönlichen Forderung an die Politik hochladen, damit der Klimaschutz während der Coronapandemie nicht ins Hintertreffen gerät. Dort wird es auch zum Streiktermin eine Liveübertragung der Wortbeiträge der Klimaaktivisten geben.
Viel Unterstützung bekommen die Klimaaktivisten auch aus den Branchen der erneuerbaren Energien. „Denn die Klimaproteste und die Diskussion über Auswege aus der Klimakrise werden mit der Coronapandemie nicht enden. Die Proteste sind intelligent und vielfältig, vor allem im Netz. In den vergangenen Wochen waren sie überdeckt, es ist jedoch nur eine Frage der Zeit, bis Klimathemen wieder oben auf die Agenda kommen”, betont Franz Pöter, Geschäftsführer der Plattform Erneuerbare Energien Baden-Württemberg.
Ökostromanlagen kurbeln die Wirtschaft an
Die Dachorganisation der Unternehmen, Verbände und Forschungsinstitute der erneuerbaren Energien im Ländle unterstützt nicht nur den Klimastreik, sondern ist an der Organisation des Tages der erneuerbaren Energien beteiligt. Dieser wird immer am letzten Samstag im April begangen. Dieser fällt in diesem Jahr auf den Tag nach dem großen – virtuellen – Klimastreik.
Pöter verweist auf die ungewöhnliche Trockenheit, nicht nur in Baden-Württemberg. Gleichzeitig sieht er auch die aktuellen Rekorde, wenn es um die Anteile der Erneuerbaren an der Stromerzeugung in Deutschland geht. „Es ist die Ernte des Ausbaus vergangener Jahre in Verbindung mit günstigen Wetterbedingungen im Winter und Frühjahr”, erklärt er. „Doch es gibt keinen Grund, sich auszuruhen – im Gegenteil: Der Klimaschutz bleibt ein Thema, auf das wir rasch dauerhafte Antworten finden müssen”, fordert Pöter. „Um beim Klimaschutz entscheidende Schritte voranzukommen, braucht es einen schnellen und starken Zubau von Solar-, Wind-, Wasserkraft-, Biomasse- und Erdwärmeanlagen.” Zugleich sei der Ausbau der Erneuerbaren eine Konjunkturspritze. Schließlich sorge der Bau und Betrieb von Ökostromanlagen für Beschäftigung, schaffe eine dauerhafte, regionale Wertschöpfung und erneuere die Infrastruktur. (su)
Berne supports photovoltaics with additional money
The Swiss government is making available an additional CHF 46 million fund for supporting photovoltaics. With this, the Ministry of the Environment wants to further stable the current market growth.
The Swiss Ministry of the Environment and Energy ( UVEK ) is funding the expansion of photovoltaics with a special contingent of CHF 46 million. This is in addition to the photovoltaic promotion already provided. UVEK thus intends to shorten the waiting list that has built up in the first three months of this year in view of the strong growth of the photovoltaic market.
Grid supplement fund is still solvent
The money is allocated via the Swiss Federal Office of Energy and comes from the grid supplement fund, i.e. money paid by Swiss electricity customers to promote energy transition. According to UVEK, the liquidity of the fund allows for this special promotion. In this way the ministry wants to stabilize the growth of new capacity from the summer of 2020. The additional funding volume will benefit not only project planners but also planners and installers, who can hope to continue to have full order books.
Funds will be paid out faster
The additional funding will also be paid out more rapidly. They are to reach the system operator no later than 14 days after the dispatch of the final decision. This is one month faster than before. With the CHF 46 million, all operators of large solar plants can receive the single payment if they have registered for the subsidy by the end of February this year. With the additional funds, all operators of small solar systems will also receive their investment subsidy until the end of 2020 if they have applied for the support by the end of March 2020. Operators of such small systems with a power output of up to 30 kilowatts, who have applied or will apply for the subsidy from April, now only have to wait nine months for their single payment. (su)
Webinar Dachintegration mit Solrif: Solarmodul wird wasserführende Schicht
Bei der Dachintegration bekommt das Solarmodul zusätzlich zur Stromproduktion eine zweite Aufgabe. Es wird zur wasserführenden Schicht. Dabei sollten aber einige Hinweise beachtet werden.
Eine Indachphotovoltaikanlage ist ein perfektes Beispiel der bauwerkintegrierten Photovoltaik. Denn hier dienen die Solarmodule nicht nur der Stromproduktion. Sie bringen auch einen zusätzlichen Nutzen für das Gebäude und sind damit integraler Bestandteil der Gebäudehülle. Denn sie fungieren gleichzeitig als Dacheindeckung. Sie ersetzen so die eigentlichen Dachziegel, die bei herkömmlichen Dächern mit Aufdachanlagen den Witterungsschutz übernehmen. Sie bilden die wasserführende Schicht auf dem Dach und sorgen mit dem auch für Ziegel üblichen Dachaufbau dafür, dass innen alles trocken bleibt.
Regeldachneigung 22 Grad
Dabei sind die im Dachdeckerhandwerk üblichen Regeln bezüglich der Dachneigung einzuhalten. So ist das System Solrif des Herstellers Ernst Schweizer AG grundsätzlich für eine Regeldachneigung von 22 Grad im Rahmen der dafür üblichen Versuche getestet. Es gelten dabei immer die üblichen Vorgaben des Zentralverbandes des Deutschen Dachdeckerhandwerks (ZVDH). „Das ist die gleiche Grenze, wie sie auch für herkömmliche Dachziegel, wie einer Frankfurter Pfanne, üblich ist”, sagt Helge Hartwig, Vertriebsleiter der Ernst Schweizer AG.
Auch zehn Grad Neigung problemlos möglich
Wenn die Dachneigung zwischen zehn und 22 Grad liegt, sind Maßnahmen notwendig, wie sie der ZVDH auch für herkömmliche Dachziegel beschrieben hat. So muss der Handwerker zum Beispiel eine um so dichtere Unterdeck- oder Unterspannbahn verwenden, je geringer die Dachneigung ist. „Mit den üblichen Vorsichtsmaßnahmen nach ZVDH kann auch unter dieser Grenze kein Wasser ins Gebäude eindringen”, betont Helge Hartwig. So ist die Dacheindeckung mit dem Solrif auch bis zu einer Dachneigung von bis zu zehn Grad möglich. Flacher sind übliche Ziegeldächer ohnehin in der Regel nicht. „Da wir aber mit dem Solrifsystem genau die gleichen Voraussetzungen brauchen, wie bei normalen Falzziegeln, kennen die Zimmerer und Dachdecker diese Vorgaben schon und wissen in der Regel, was zu tun ist”, betont Hartwig.
Weitere Details erklärte Helge Hartwig im Rahmen des Webinars „Dachintegration mit Solrif – Ein bewährtes System für moderne Optik”, das Sie auf der Landingpage des Indachsystems Solrif der Ernst Schweizer AG finden.
BIPV Boost: Close regulatory gaps for solar building products
A new study by the industry and research consortium BIPB Boost has collected the current gaps in the regulation of solar building products. In the paper they also described how these regulatory gaps can be closed.
BIPV Boost, a European industry and research consortium for building-integrated photovoltaics, has collected the currently existing norms and standards for solar building products. In the study „Standardization, performance risks and identification of related gaps for a performance-based qualification in BIPV“, the authors not only show which standards the manufacturers of BIPV products as well as architects and planners as users of such construction products currently have to comply with. They also describe the current regulatory gaps, which not only cause uncertainty among architects and planners, but also hinder the integration of photovoltaic elements into the building envelope.
BIPV: more than just a construction product
One of the major barriers is a European patchwork quilt. The authors also criticise the fact that the current legal framework attempts to combine the standards for photovoltaic products and the standards for construction products without introducing new test procedures specifically for BIPV. „BIPV is a multifunctional construction product”, write the authors. „However, a BIPV product cannot in any way be considered only as a building component since it has an active part for electricity production and will therefore have to satisfy the Low Voltage Directive, 2014/35/EU of electrical products and all the rules derived from it. For both sectors it will be necessary to find a methodology bringing union and standardization to well-defined rules that are not just the sum of them.”
Roadmap for standardization
The authors have described what this standardization can look like in the third part of their study. „Because from the current regulatory framework, very often not sufficient for addressing a proper BIPV performance assessment and validation, it arises the need to identify new ‚multi-disciplinary‘ reference requirements, performance levels and new test methodologies better suited to the use of PV in building skin”, emphasize the authors. They have therefore developed a roadmap to define new reference procedures for BIPV products qualification, as the basic ground for next developments in the coming years.
The study is available for free download on the website of the BIPV Boost project. (su)
Coronakrise: PV Austria schlägt Konjunkturprogramm für Photovoltaik vor
Der österreichische Branchenverbrand PV Austria fordert ein Konjunkturprogramm für die Erneuerbaren, um nicht nur die Corona- sondern auch die Klimakrise zu überwinden. Als erstes sollte sofort ein ausreichend dotiertes Förderprogramm für Kleinanlagen starten.
PV Austria schlägt ein Coronakonjunkturprogramm für die Photovoltaik vor. Die oberste Priorität bei der Bewältigung der Auswirkungen der Krise müsse die Unterstützung von Investition in eine nachhaltige Zukunft im Allgemeinen und in die Photovoltaik im Besonderen haben. Schließlich Österreich braucht das Zehnfache der derzeit installierten Solarstromleistung, um das Land bis 203 komplett mit Ökostrom zu versorgen.
Bisher hat die Bundesregierung mit der Verlängerung der Inbetriebnahmefrist um ein halbes Jahr schon reagiert. Doch weiter Maßnahmen sind notwendig. So müsse umgehend die Förderung von Kleinanlagen gestartet werden. Schließlich sei dies ein sehr wichtiges Segment, in das vor allem Hauseigentümer investiere. Es muss auch ausreichend dotiert sein, damit der Zubau in Österreich entsprechend der Ziele der Bundesregierung Fahrt aufnimmt.
Kleinanlagenförderung endlich starten
Die Förderung ist zudem wichtig für die Installations- und Planungsunternehmen der Branche. Denn gerade in diesen Tagen werde der Förderstart bereits dringend erwartet, um im österreichischen Gewerbe die Auftragslage anzukurbeln und die sonnige Jahreszeit voll nutzen zu können, betonen die Branchenvertreter mit Blick auf die Sicherung und Neuschaffung von Arbeitsplätzen in Zeiten, in denen eine Rezession aufgrund der Coronakrise droht. Schließlich sei für den Bau von Solaranlagen, die bis 2030 eine installierte Leistung von 15 Gigawatt erreichen sollen, etwa 200.000 zusätzliche Arbeitsplätze notwendig. Zudem bleibe die Wertschöpfung vor Ort. Mit den Kleinanlagen ist das relativ schnell erreichbar. Denn gerade dieses Segment kann sehr dynamisch reagieren, während der Bau von großen Solargeneratoren aufgrund des Planungsaufwands weniger flexibel auf Veränderungen reagieren kann.
Förderdeckel abschaffen
Die Branchenvertreter beziehen sich dabei auf eine Studie, die Greenpeace Österreich jüngst veröffentlicht hat. Die Autoren dieser Studie sehen mittelfristig in der Aufhebung des Förderdeckels ein probates Mittel, um den Ausbau zu beschleunigen. Denn in Österreich bekommen die Betreiber eine Förderung für höchstens 500 Kilowatt Leistung. Außerdem müssen die klimaschädlichen Subventionen endlich abgebaut und werden und dürfen nach der Krise nicht dazu dienen, um der fossil betriebenen Energiewirtschaft wieder auf die Beine zu helfen. Stattdessen sollte die Krise für einen konsequent nachhaltigen Umbau der Energieversorgung genutzt werden. (su)
The future tenants of two apartment buildings in Oranienburg near Berlin will not only get most of their energy from the building envelope, but also all of it at an all-inclusive price. The Oranienburg housing association WOBA is implementing a pioneering energy concept for this purpose.
In Oranienburg, a small town north of Berlin, the local housing company WOBA is currently building two multi-family houses, whose residents will in future receive the complete energy supply at an all-inclusive flat rate. This is made possible by a unique energy concept. This is because 60 percent of the heat and 70 percent of the electricity consumption is covered by solar systems integrated into the roofs and façades of the two buildings.
The upper half of the roofs is equipped with solar thermal collectors. These provide the residents of the buildings with a complete heat supply in the spring and summer months. In order to be able to use the sun’s heat well into the autumn, a huge long-term heat storage tank is installed inside each building. This means that the gas condensing boiler, which is integrated into the system as a back-up, only has to support the system in the cold winter months when the days are too short and the outside temperatures are at their lowest.
Achieve high solar energy shares
The power supply is largely provided by the solar modules in the roofs and façades. In order to increase local consumption, an electricity storage unit will also be installed in each of the two buildings. „For the apartment buildings in Oranienburg, the aim was to achieve a high proportion of solar energy in both the heat and power supply. Electromobility is also part of the overall concept,“ explains Timo Leukefeld, solar professor at the TU Bergakademie Freiberg and developer of the energy concept.
Energy costs stabilized
For WOBA, too, the project is a first step towards decarbonizing its own housing stock and arriving at a modern energy and rental concept. „As housing managers, we have long been concerned with how houses can be supplied with electricity and heat in the future“, explains Bernd Jarczewski, Managing Director of WOBA. „Thanks to the high proportion of solar energy, the electricity and heating costs are low, stable and plannable in the long term“, he says with regard to the energy concept of the new residential buildings. „This makes it possible for us to offer an all-inclusive rent. Our tenants need not be concerned about the additional costs and the energy costs, which will in all probability rise“. In addition, WOBA saves on the service charge settlement for the 14 rental parties in the new buildings.
The installers of the Bernese construction company Swiss Renova have completely renovated an apartment building in the Swiss capital dating from 1963. Now, gold-coloured solar modules create a unique appearance of the building.
In the course of a renovation project, Swiss Renova’s installers have equipped an apartment building in the city of Berne with solar balconies. A total of 240 modules in various sizes were installed under the balcony parapets. A special technology used by the specialists of the Erfurt-based module manufacturer A2 Solar ensures a unique appearance. This is because the upper module glasses consist of a structural glass with an additional dot grid. In combination with a solar-grey film in which the solar cells are embedded, they achieve a special golden colouring of the modules. The prefabricated balcony elements were mounted on the existing building as a complete system.
30 megawatt hours of solar power from the façade
In order to keep the performance of the modules as high as possible despite the colouring, A2 Solar has laminated efficient monocrystalline solar cells between the two module glasses. As a result, the power output of the entire balcony façade reaches 46 kilowatts. This means that the façade supplies approximately 30,000 kilowatt hours of clean solar power for own consumption every year.
Die Schweizer Regierung will das Energiegesetz novellieren und so die Förderung von Solaranlagen über das Jahr 2030 hinaus sicherstellen. Im Segment der Großanlagen will sie auf Ausschreibungen umstellen.
Die Schweizer Bundesregierung hat beschlossen, die Förderung von Ökostromanlagen zu verlängern. Bisher sieht das Energiegesetz vor, dass die Förderung von erneuerbaren Energien im Stromsektor spätestens bis 2030 beendet wird. Bis dahin bekommen die Betreiber von neuen Ökostromanlagen einen Zuschuss zur Investition in ihren Generator. Diesen Förderung will der Schweizer Bundesrat jetzt bis mindestens 2035 fortführen.
Zubauziele festgelegt
Auch danach ist eine Förderung weiterhin möglich, wenn die neuen Zubauziele nicht erreicht werden. Das ist neu. Denn bisher sind im Energiegesetz nur Richtwerte für den Ausbau der Ökostromproduktion bis 2020 und 2035 als Orientierungshilfe verankert. Die werden jetzt durch verbindliche Ziele für die Jahre bis 2050 ersetzt. Um diese zu erreichen, will die Regierung den Ausbau der Erneuerbaren in Zukunft mit einem Monitoring im Blick behalten. Sollte sich dabei herausstellen, dass der Ausbau zu langsam geht, kann Bern entsprechend nachsteuern.
Umstieg auf Ausschreibung vorgesehen
Grundsätzlich gehe es darum, die Förderung im Sinne der Kontinuität und Vorhersehbarkeit mit den bestehenden Instrumenten weiterzuführen, betont der Bundesrat. Er verzichtet dabei weitgehend auf einen grundsätzlichen Systemwechsel der Förderung und neue Unterstützungsinstrumente. Denn das könne sich negativ auf den Zubau und die Fördereffizienz auswirken. Mit einer Ausnahme. Große Photovoltaikanlagen sollen in Zukunft wieder mit einer Einspeisevergütung gefördert werden. Diese will der Bundesrat in Ausschreibungen ermittelt. Dabei bekommt derjenige Solarstromproduzent den Zuschlag, der eine vorher bestimmte Menge an Photovoltaikstrom am günstigste produzieren kann. Für kleinere Anlagen wird es weiterhin den bisherigen Investitionszuschuss geben.
Kosten für die Stromverbraucher bleiben gleich
Der verbindliche Zubau und die beschleunigte Energiewende soll sich aber nicht im Geldbeutel der Schweizer Energieverbraucher niederschlagen. So rechnet die Regierung, dass die angepassten Fördermaßnahmen 215 Millionen Franken pro Jahr kosten. Diese werden weiterhin von Stromkunden über den Netzzuschlag finanziert. Der bleibt wie bisher bei 2,3 Rappen pro Kilowattstunde bestehen.
Bisher ist die Änderung aber noch keine beschlossene Sache. Das Umwelt- und Energieministerium hat aber schon eine entsprechende Vernehmlassung gestartet. Bis 12. Juli 2020 kann jeder Schweizer seine Stellungnahme zur Änderung des Energiegesetzes beim Bundesamt für Energie (BFE) abgeben. (su)
Solar Power Europe: EU should strengthen BIPV development
With a declaration, the European Solar Association has summarized the measures necessary for the development of building-integrated photovoltaics. In this way, Europe could take the lead in the BIPV sector and at the same time tackle the climate protection targets it has set itself.
In order to highlight the advantages of BIPV, Solar Power Europe (PSE) wants to increase the potential for solar façades and photovoltaic roofs more rapidly. The photovoltaic industry has done its homework. The systems have become extremely inexpensive in recent years. In addition, more and more companies have adopted BIPV and developed appropriate products and distribution channels.
Leverage to achieve the emission targets
However, in order to pave the way for solar modules to be integrated into the building envelope, European politics needs to do its part. „BIPV can become a flagship European industry”, says Walburga Hemetsberger, CEO of SPE. „Europe is already where most of these products are installed, and there is vast potential to be exploited in our buildings’ roofs and façades. Decarbonising of EU’s building stock is one of the most powerful drivers to reach the Commission’s C02 emission goals, and BIPV can make new and renovated buildings more sustainable by reducing their emissions, which would in turn lead to cleaner and healthier cities.”
Showing the way
What is necessary for the wider use of solar modules in the building envelope has been summarised by SPE in a BIPV declaration. This is not just about raising the standards for the construction industry to take photovoltaic systems into account in the planning and construction of buildings. It is also about the development of a corresponding industrial strategy, standardisation and uniform norms within the EU.
Develop strategic industrial sector
In addition, cities and municipalities should be given more support in switching to renewable energies. „With this new Declaration, we aim to provide legislators with a ready-to-go toolbox to ensure Europe takes the lead on BIPV”, emphasises Alexandra Sombsthay, Chair of the BIPV Task Force at SPE. „This technology offers Europe the opportunity to develop a strategic industrial sector. We will work to ensure a bold industrial policy and for the creation of a single market for construction goods, this will bolster the construction sector, bringing new jobs, innovation and businesses.”
Historic equestrian centre in Amsterdam gets solar roof
The planners of the Dutch solar project developer Zonel have covered the roof of an indoor riding arena of the Hollandsche Manege with semi-transparent solar modules. The modules from Wismar-based Sonnenstromfabrik are the heart of a modern energy concept for the historic riding centre.
The Hollandsche Manege is a very special kind of riding school. Because it was built in the 19th century in the middle of Amsterdam. It consists of a large main riding hall, where once the rich citizens of Amsterdam and the royal family could practice their riding skills. There are also several outbuildings and smaller riding halls. Within the scope of a renovation and modernisation, the building was also converted to a modern energy concept.
Roof covered with modules
At the heart of this concept is a solar system which is also the roof covering of one of the riding halls. For this purpose, the planners from Zonel, a photovoltaic project developer based in Bosch en Duin, south of Amsterdam, covered the roof with solar modules. In order to achieve the required entry of daylight and at the same time install the highest possible photovoltaic power output on the existing surface, they opted for semi-transparent glass-glass modules with crystalline solar cells. „This not only allows us to realise architecturally outstanding concepts, but also to save the high costs of conventional roof constructions,“ explains Bernhard Weilharter, Managing Director of Sonnenstromfabrik, based in the Hanseatic city of Wismar on the Baltic Sea.
150 kilowatts installed
The company supplied the modules for the Hollandsche Manege. A light transmission of 19 percent was sufficient for the riding hall in Amsterdam. This has the advantage of increasing the installed capacity compared to a higher transparency. In this way, modules with a total power output of around 150 kilowatts could be installed.
Historisches Reitzentrum in Amsterdam bekommt Solardach
Die Planer des niederländischen Solarprojektierer Zonel haben das Dach einer Reithalle der Hollandsche Manege mit semitransparenten Solarmodulen eingedeckt. Die Module der Sonnenstromfabrik aus Wismar sind das Herz eines modernen Energiekonzepts des historischen Reitzentrums.
Die Hollandsche Manege ist eine Reitschule ganz besonderer Art. Denn sie entstand im 19. Jahrhundert mitten in Amsterdam. Sie besteht aus einer großen Hauptreithalle, wo sich dereinst die reichen Bürger Amsterdams und die königliche Familie in Reitkünsten üben konnten. Dazu kommen noch mehrere Nebengebäude und kleinere Reithallen. Im Rahmen einer Sanierung und Modernisierung wurde auch auf ein zeitgemäßes Energiekonzept umgestellt.
Dach mit Modulen eingedeckt
Das Herz dieses Konzepts ist eine Solaranlage, die gleichzeitig die Dacheindeckung einer der Reithallen ist. Dazu haben die Planer von Zonel, einem Photovoltaikprojektierer aus Bosch en Duin, südlich von Amsterdam, das Dach mit den Solarmodulen eingedeckt. Um den erforderlichen Eintrag von Tageslicht zu erreichen und gleichzeitig eine möglichst hohe Photovoltaikleistung auf die vorhandene Fläche zu installieren, haben sie sich für semitransparente Glas-Glas-Module mit kristallinen Solarzellen entschieden. „Dadurch lassen sich nicht nur architektonisch herausragende Konzepte realisieren, sondern auch die hohen Kosten für konventionelle Dachkonstruktionen einsparen”, erklärt Bernhard Weilharter, Geschäftsführer der Sonnenstromfabrik mit Sitz in der Hansestadt Wismar an der Ostsee.
150 Kilowatt installiert
Das Unternehmen hat die Module für die Hollandsche Manege geliefert. Für die Reithalle in Amsterdam reichte eine Lichtdurchlässigkeit von 19 Prozent. Das hat den Vorteil, dass die installierte Leistung dadurch im Vergleich zu einer höheren Transparenz steigt. Auf diese Weise konnten Module mit einer Gesamtleistung von etwa 150 Kilowatt installiert werden.
Stromdao stellt kostenlose Konferenzplattform zur Verfügung
Der Geschäftsführer des Heidelberger Stromanbieters Stromdao gibt seine selbst programmierte Plattform für Telefon- und Videokonferenzen zur allgemeinen Nutzung frei. Damit will er in Zeiten der Coronapandemie digitale Kommunikation ermöglichen.
Derzeit werden viele Photovoltaikanlagen und solare Gebäude an heimischen Schreibtischen geplant. Dienstreisen und Vertriebstermine sind auf unbestimmte Zeit verschoben. Doch auch wenn derzeit Homeoffice für viele Unternehmen und ihre Mitarbeiter die sicherste Alternative ist, um dem Coronavirus auszuweichen, sind regelmäßige Besprechungen unumgänglich, damit sich die einzelnen Mitarbeiter über den aktuellen Stand der Planungen und der Umsetzung auf dem Laufenden halten können.
Deshalb hat Thorsten Zoerner, Geschäftsführer des Ökostromanbieters Stromdao, hat deshalb seine Plattform für Video- und Telefonkonferenzen zur kostenlosen Nutzung freigegeben. Zoerner hatte diese schon vor einigen Monaten selbst programmiert. Sie vernetzt nachhaltig und unkompliziert Menschen privat und beruflich, per Telefon, Smartphone, Tablet und Personal Computer.
Wirtschaftliche Verluste vermeiden
In Zeiten von Kontakt- und Ausgangssperren im Rahmen der Coronapandemie bekomme die Plattform eine neue Dimension, sagt der Entwickler. „Digitale Kommunikation hilft wirtschaftliche Verluste zu minimieren und in der Gesellschaft Infektionen zu vermeiden“, erklärt Zoerner seine Motivation, die digitale Konferenzplattform der Allgemeinheit kostenlos zur Verfügung zu stellen.„Wir haben bei uns im Unternehmen schon vor 14 Tagen alle ins Homeoffice geschickt. Das Risiko einer Ansteckung ist viel zu groß. Kommunikation wird digital ausgeführt, Serverressourcen sind ausreichend vorhanden.” Einen Zugang zur Plattform finden Sie auf der Internetseite des Heidelberger Stromanbieters. (su)
Finding defects in the solar façade with the laser
Finding problems in solar systems is not so easy. Especially if there is no module plan. Unless you have a laser at hand: Then troubleshooting is much faster.
Without a string plan it becomes difficult to find a fault in solar systems. „Therefore, the first thing we do is make a complete documentation of the wiring of the system“, explains Steffen Huber, master roofer and solar installer from Neustadt-Glewe in north-eastern Germany. „There are several possibilities for this, but they are usually very complex and cost a lot of time. In addition, some of the solutions are dependent on weather and irradiation conditions“. For example, reverse current thermography is very costly to create string plans of small and medium-sized systems on private and commercial building roofs.
Master roofer Steffen Huber first documents the system with the Solartektor. Then he sets off to troubleshoot the system with the various sets. Since a few months this is easier. Because he and his employees are now using a fault location set called LSI from Solartektor to search for faults in the system. This makes it possible to create a complete documentation of the plant’s wiring without much effort. How this works was explained by Oliver Lenckowski and Klaus Terlinden in a webinar organized by the editorial staff of photovoltaik together with Solartektor. The two master electricians from Harrislee, a small town west of Flensburg, developed the fault location set.
Laser beam made audible
The heart for the creation of a module plan are the laser detector and the laser projector. „The Lasertektor is the receiving device that is connected to the plus and minus pole of the module string to be documented,“ explains Klaus Terlinden. „A second solar technician positions himself in front of the system with the Laserprojektor so that he has a good view of the module string“. The angle to the modules is less important. But the craftsman must be able to see which module the laser beam is hitting.
Then he presses a small button on the Laserprojektor and sends a laser beam to the module field, which generates a pulsed signal. The energy of the beam is sent to the Laserdetektor via the string line. It converts this into an audible signal. From the wireless headphones worn by the two craftsmen, the typical beeping sound is heard when the laser hits a module connected to the corresponding string line.
Only a quarter of the time required
When this happens, the craftsman at the inverter notifies his colleague at the laser projector outside and the latter can note the result in a table from which the string plan is later created. He continues to guide the laser across the module field and every module that produces a high-pitched tone belongs to the same string.
When the first string is documented, the craftsman standing at the inverter connects the next string to the laser detector and the examination starts all over again. This takes so long until all modules are assigned to one string. „This is done relatively quickly,“ says Steffen Huber. „Where we used to spend several days to draw up a module plan, we now only need about a quarter of the time for complete documentation.“
How the installer proceeds to the actual troubleshooting after he has created the string plan and which errors are found with the set of solar panel You can read in the issue 2/2020 of the trade journal photovoltaik, which You can order here as a single issue. You can also find a recording of the webinar that photovoltaik organised together with Solartektor and Solar Age on the Solartektor‘s website. (su)
Audi equips training and event center with solar façade
The Audi Brand Experience Center has been created on the grounds of Munich Airport. Architect Peter Zauner has not only given it a unique appearance. Solar modules from Ertex Solar in the façade supply the electricity for the building's modern energy concept.
Until now, Audi has relied on high-quality workmanship and modern design for its cars. But the carmaker is now applying these maxims to architecture as well. The new Audi Brand Experience Center is to become a showcase for sustainability. As the fourth international training center, it completes the new Audi Campus at Munich Airport. The company wants to show that ecology and economy are not contradictory.
32 different module sizes manufactured
This has been achieved with a unique and futuristic-looking building. The energy concept is also designed with this goal in mind. Because the glass façade frames two inner cores consisting of solar modules. Ertex Solar has produced a total of 118 customized modules. To ensure that these fit well into the glass frame, the module manufacturer from Amstetten in Lower Austria had to produce 32 different sizes.
Semi-transparent modules used
The solar power is completely consumed on site. For example, a geothermal system provides heat for space heating in winter. In summer it provides effective cooling. The solar modules also reduce the summer heat input into the building, but still provide sufficient daylight, as they are semi-transparent.
Second life for the storage tank
The excess solar power is stored temporarily in two battery storages. These consist of lithium-ion batteries, which previously provided power in Audi electric cars, but which are no longer sufficient in terms of their performance parameters. For a stationary battery storage system that is exposed to other, less extreme loads, such so-called second-life storage units are still ideally suited.
Thinking about visitors
But solar energy is not only used in buildings. Because six charging points for electric vehicles have also been installed next to the building. These include two quick-charging points where visitors to the Audi Brand Experience Center can charge the solar power from the solar façade with a full 150 kilowatts into the batteries of their electric cars. (su)
Probleme in Solaranlagen zu finden ist nicht so einfach. Vor allem wenn es keinen Modulplan gibt. Es sei denn, man hat einen Laser zur Hand: Dann geht die Störungssuche viel schneller.
Ohne Stringplan wird es schwierig, einen Fehler in Solaranlagen zu finden. „Wir machen deshalb als Erstes eine komplette Dokumentation der Verschaltung der Anlage”, erklärt Steffen Huber, Dachdeckermeister und Solarinstallateur aus Neustadt-Glewe. „Dafür gibt es mehrere Möglichkeiten, die aber in der Regel sehr aufwendig sind und viel Zeit kosten. Außerdem sind wir mit einigen der Lösungen auf die Wetter- und Einstrahlungsbedingungen angewiesen.” So ist eine Rückstromthermografie sehr aufwendig, um Stringpläne von kleineren und mittelgroßen Anlagen auf privaten und gewerblichen Gebäudedächern zu erstellen.
Dachdeckermeister Steffen Huber dokumentiert mit dem Solartektor zunächst die Anlage. Danach macht er sich mit den verschiedenen Sets auf die Fehlersuche. Seit einigen Monaten ist das einfacher. Denn er und seine Mitarbeiter machen sich jetzt mit einem Fehlerortungsset namens LSI von Solartektor auf die Suche nach Fehlern in der Anlage. Damit lässt sich auch ohne viel Aufwand eine komplette Dokumentation der Verschaltung der Anlage erstellen. Wie das funktioniert, haben Oliver Lenckowski und Klaus Terlinden im Webinar erklärt, das die Redaktion von photovoltaik zusammen mit Solartektor veranstaltet hat. Die beiden Elektromeister aus Harrislee, einem kleinen Örtchen westlich von Flensburg, haben das Fehlerortungsset entwickelt.
Laserstrahl hörbar gemacht
Das Herzstück für die Erstellung eines Modulplans sind der Lasertektor und der Laserprojektor. „Der Lasertektor ist das Empfangsgerät, das an den Plus- und Minuspol des Modulstrings angeschlossen wird, der dokumentiert werden soll“, erklärt Klaus Terlinden. „Ein zweiter Solarteur stellt sich mit dem Laserprojektor vor der Anlage auf, sodass er das Modulfeld gut einsehen kann.“ Dabei ist weniger der Winkel zu den Modulen wichtig. Aber der Handwerker muss sehen können, auf welches Modul der Laserstrahl trifft.
Danach drückt er auf einen kleinen Knopf auf dem Laserprojektor und schickt so einen Laserstrahl auf das Modulfeld, das ein gepulstes Signal erzeugt. Die Energie des Strahls wird über die Stringleitung zum Lasertektor geschickt. Der wandelt dieses in ein hörbares Signal um. Aus den Funkkopfhörern, die die beiden Handwerker tragen, ertönt das typische Piepen, wenn der Laser auf ein Modul trifft, das an die entsprechende Stringleitung angeschlossen ist.
Nur noch ein Viertel der Zeit notwendig
Wenn das passiert, gibt der Handwerker am Wechselrichter seinem Kollegen am Laserprojektor draußen Bescheid und dieser kann das Ergebnis in einer Tabelle vermerken, aus der später der Stringplan entsteht. Er führt den Laser weiter über das Modulfeld und jedes Modul, das einen hohen Ton erzeugt, gehört zum gleichen String.
Wenn der erste String dokumentiert ist, steckt der Handwerker, der am Wechselrichter steht, den nächsten String an den Lasertektor und die Untersuchung beginnt von vorn. Das dauert so lange, bis alle Module einem String zugeordnet sind. „Das geht relativ schnell“, sagt Steffen Huber. „Wo wir früher mehrere Tage lang damit zugebracht haben, einen Modulplan zu erstellen, brauchen wir jetzt nur noch etwa ein Viertel der Zeit für eine komplette Dokumentation.“
Wie sich der Installateur auf die eigentliche Fehlersuche macht, nachdem er den Stringplan erstellt hat und welche Fehler mit dem Set von Solartektor findet, lesen Sie in der Ausgabe 2/2020 der Fachzeitschrift photovoltaik, die Sie hier als Einzelheft bestellen können. Außerdem finden Sie eine Aufzeichnung des Webinars, das photovoltaik gemeinsam mit Solartektor und Solar Age veranstaltet hat, auf der Internetseite von Solartektor.
Sonnendach auf dem Wiener Haus des Meeres geht in Betrieb
Bereits im Herbst des vergangenen Jahres haben die Installateure von Wien Energie auf dem Haus des Meeres in der österreichischen Hauptstadt ein ganz besonderes Sonnendach errichtet. Das geht jetzt in Betrieb.
Die 202 Solarmodule sind auf dem Dach des Hauses des Meeres in Wien installiert. Jetzt nimmt der Versorger und Projektierer Wien Energie die Anlage in Betrieb. „Artenschutz trifft Klimaschutz! Die Kooperation mit dem Haus des Meeres ist ein Vorzeigebeispiel wie wir gemeinsam die Energiewende in der Stadt weiter vorantreiben”, betont Michael Strebl, Geschäftsführer von Wien Energie anlässlich der Inbetriebnahme.
Die Anlage ist etwas ganz Besonderes. Denn nicht nur, dass sie in 56 Metern Höhe auf dem Dach des Aquarienhauses im Stadtteil Mariahilf installiert ist, das im Zweiten Weltkrieg als Flakturm fungierte. Wie Energie hat außerdem mit bifacialen Glas-Glas-Modulen eine Überdachung der Dachterrasse des Gebäudes geschaffen. Diese dient in Zukunft als Sonnen- und Regenschutz für die Besucher des dort untergebrachten Ocean Sky Cafés. Sie sorgen gleichzeitig für eine einzigartige Lichtstimmung für die Gäste.
Zehn Prozent mehr Ertrag
Die Module erzeugen nicht nur Strom auf der sonnenzugewandten Seite, sondern nutzen auch das indirekte Licht, das zwischen den Modulen auf die Dachterrasse fällt und von dort auf die Rückseite der Paneele reflektiert wird. Deshalb erwartet Wien Energie einen höheren Ertrag als bei Modulen, die nur die Vorderseite zur Stromproduktion nutzen. „Das 800 Quadratmeter große Solardach erzeugt durch den Einsatz dieser neuartigen Technologie bis zu zehn Prozent mehr Strom”, sagt Michael Strebl. Die Planer nehem aber den zusätzlichen Ertrag von der Modulrückseite zunächst noch aus ihren Prognosen heraus. Denn sie wissen noch nicht, wie sich die Nutzung der Rückseite tatsächlich auswirkt. Deshalb gehen sie von 63,3 Megawattstunden pro Jahr bei einer Anlagenleistung von 63 Kilowatt aus.
Strom direkt nutzen
Das Haus des Meeres wird die von der Überdachung der Terrasse erzeugte Energie vor Ort nutzen. „Der künftig auf unserem Dach erzeugte Sonnenstrom wird den gesamten Strombedarf unserer Zoobereiche im neuen Zubau decken”, sagt Hans Köppen, Geschäftsführer des Hauses des Meeres. „Gemeinsam mit der neuen begrünten Hauswand zeigen wir, dass uns unsere Umwelt besonders am Herzen liegt.” Allerdings reicht der Ertrag nicht aus, um den gesamten Strombedarf des Gebäudes zu decken. Deshalb wird Wien Energie zusätzlich Strom aus Wasserkraft liefern. (su)
Weitere spannende Projekte zur bauwerkintegrierten Photovoltaik finden Sie in unserer Datenbank. Diese können Sie nach Registrierung kostenlos nutzen.
PV Austria: Verleihung des BIPV Awards ist verschoben
PV Austria muss aufgrund der aktuellen Entwicklung der Beschränkung des sozialen Lebens den Photovoltaikkongress absagen. Dadurch wird auch die Verleihung des zweiten österreichischen BIPV-Awards verschoben.
Lange hat PV Austria darum gekämpft, den österreichischen Solarhandwerkern, Planern und Installateuren die Möglichkeit zu geben, sich über neuste Entwicklung der Photovoltaik zu informieren. Doch nun zwingen die aktuellen Entscheidungen der österreichischen Bundesregierung dazu, auch den geplanten Livestream des diesjährigen Photovoltaikkongresses abzusagen. „Auf Grund der weiteren Verschärfung der Ausgangsbeschränkungen ist es uns leider, trotz aller Bemühungen und Kreativität, sowie der Nutzung der neuesten digitalen Techniken und der Flexibilität der Vortragenden, nicht möglich, die Veranstaltung in unserer gewohnt hohen Qualität anzubieten”, erklärt der Branchenverband.
PV Austria arbeite an einer Alternative
Denn in Österreich sind umfangreiche Beschränkungen des öffentlichen Lebens in Kraft getreten, so dass auch eine personelle Beschränkung der Frühjahrstagung auf die Vortragenden und die Veranstalter nicht möglich ist. PV Austria arbeitet allerdings derzeit noch an einer Alternative, um die spannenden Vorträge und Informationen zu verbreiten, die für die Tagung vorgesehen waren. Wie das geschehen soll, steht noch nicht fest, wird aber rechtzeitig bekanntgegeben.
Die installierte Leistung von Heimspeichern in Deutschland ist im vergangenen Jahr weiter kontinuierlich gestiegen. Wachstum verzeichnet die Speicherbranche aber vor allem bei größeren Systemen.
Immer mehr Hauseigentümer entscheiden sich für ein Speichersystem. Das geht aus den aktuellen Umsatz- und Installationszahlen des Bundesverbandes Energiespeicher (BVES) hervor. Demnach ist in Deutschland die installierte Leistung von Heimspeichern von 440 Megawatt am Ende des Jahres 2018 auf 680 Megawatt Ende des vergangenen Jahres gestiegen. Damit wachsen die Installationszahlen kontinuierlich weiter.
Umsatzsteigerung bei Gewerbespeichern
Für die Hersteller bedeutet das einen stabilen Umsatz von 660 Millionen Euro – allerdings kein Wachstum in diesem Bereich. Das Umsatzwachstum konnten die Hersteller vor allem im Segment der Industrie- und Gewerbespeicher verbuchen. Das sind Speicher in einer Größe, wie sie nicht nur in Unternehmen, sondern auch in Mehrfamilienhäusern eingesetzt werden. Erstmals hat der BVES auch die mit Speichern gekoppelte Ladeinfrastruktur separat erfasst. Auf Batterieseite könnte sich dadurch ein zusätzlicher Umsatz im Größenbereich der Heimspeicher ergeben, da die meisten Ladepunkte vor allem mit solchen Systemen gekoppelt sind. Hier verbucht die Branche einen Umsatz von 200 Millionen Euro.
Geschäft verlagert sich ins Ausland
Für dieses Jahr erwartet der BVES eine weitere Umsatzsteigerung für die Branche auf sechs Milliarden Euro. Allerdings werde sich das Geschäft zunehmend ins Ausland verlagern. „Im heimischen Markt wird die Entwicklung der Zukunftsbranche Energiespeicher durch veraltete regulatorische Rahmenbedingungen begrenzt“, betonen die Branchenvertreter. „Das belegen auch erneut die BVES-Branchenzahlen 2020, die die regulatorischen Bedingungen als dominierendes Markthemmnis für die Geschäfte der Energiespeicherunternehmen identifizieren.“
Rechtsrahmen verbessern
Deshalb mahnt der Branchenverband endlich einen Modernisierung des Rechtsrahmens ein. „Die technologischen Grundlagen sind gegeben. Einzig die rückständige Regulatorik behindert den breiten, systemdienlichen Einsatz von Energiespeichern vom Kondensator bis zu Wasserstoff“, erklärt Urban Windelen, Bundesgeschäftsführer des BVES. „Dabei liegt die Notwendigkeit von Speichern auf der Hand. Es gibt keine andere Möglichkeit, Sonnenstrom in die Nacht zu bringen als mit einem Speicher. Ein Kabel oder auch der europäische Strombinnenmarkt helfen da leider nicht weiter.“ (su)
Die diesjährige Photovoltaiktagung von PV Austria wird als Präsenzveranstaltung untersagt. Sie findet aber trotzdem statt: als Livestream auf der Webseite des Veranstalters. Davon ist auch die Verleihung des zweiten BIPV-Awards betroffen.
Das österreichische Sozialministerium hat alle Veranstaltungen mit mehr als 100 Teilnehmern untersagt. Davon ist auch die diesjährige Frühjahrstagung von PV Austria betroffen. Das Treffen der österreichischen Photovoltaikbranche wird aber nicht einfach abgesagt, sondern als Livestream auf der Internetseite von PV Austria übertragen. Vor Ort in Wien werden sich die Referenten, Organisatoren, Sponsoren und Aussteller treffen, um die geplanten Vorträge abzuhalten.
Fragen können gestellt werden
So bleibt das gesamte Programm weiterhin bestehen. Es werden sich aber aufgrund der ausbleibenden Cafépausen die Vortragszeiten verschieben. Alle angemeldeten Teilnehmer werden automatisch auf den Videolivestream umgestellt und bekommen rechtzeitig vor Beginn der Veranstaltung einen entsprechenden Zugangslink zugeschickt. Über eine Dialogfunktion haben die Teilnehmer während der Veranstaltung die Möglichkeit, Fragen zu stellen.
Anmeldungen sind noch möglich
Gleichzeitig senkt PV Austria die Teilnahmegebühr auf die reinen Kosten für die Liveübertragung. Der Vorteil: Im Anschluss der Veranstaltung werden den Teilnehmern nicht nur die Präsentationsfolien der Vortragenden zugänglich sein, sondern die gesamte Aufzeichnung der Tagung. Eine kostenfreie Stornierung der Teilnahme ist noch bis Freitag, 13. März möglich. Aber es können sich auch Kurzentschlossene noch für den Livestream der Veranstaltung anmelden. (su)
Immer mehr Bauherren und Hauseigentümer entscheiden sich für Wärmepumpen – sowohl im Neubau als auch in der Sanierung. In Deutschland gibt es dafür inzwischen auch eine üppigere Förderung.
Die energetischen Anforderungen an Wohn- und Gewerbegebäude steigen – vor allem im Neubau. Um den Ausstoß von Treibhausgasen zu minimieren, ist vor allem der Einbau klimaschonender Heizungssysteme von Bedeutung. Deshalb setzen immer mehr Hauseigentümer auf die Installation einer Wärmepumpe, wenn sie eine neue Heizungsanlage einbauen – sei es im Neubau oder im Rahmen einer Sanierung.
Vor allem wenn die Wärmepumpe mit einer Solaranlage betrieben wird, trägt sie zur Senkung der CO2-Emissionen bei. Hinzu kommt noch, dass die Wärmepumpe eine der effizientesten Heizsysteme ist. Denn sie nutze – je nach Modell und Rahmenbedingungen – bis zu 80 Prozent Umweltenergie und etwa 20 Prozent Strom. Durch die hohe Effizienz sinkt der Aufwand für die Wärmedämmung des Gebäudes. Das wiederum hat Vorteile für die Gestaltungsfreiheit der Architekten, die dann nicht mehr die Fassade mit dicken Dämmschichten planen müssen.
Marktwachstum im vergangenen Jahr
Das haben inzwischen viele Hauseigentümer und Planer erkannt. Denn der Absatz beispielsweise in Deutschland ist auch im vergangenen Jahr wieder gestiegen. Allein im Segment der Luftwärmepumpen wurden dort 66.000 Geräte verkauft, wie der Bundesverband Wärmepumpe (BWP) mitteilt. Der Anstieg um neun Prozent in diesem Segment liegt zum einen an den höheren Anforderungen an Gebäude, aber auch an der einfachen Planung und Installation solcher Systeme. Denn im Gegensatz zu den erdgekoppelten Systemen ist keine aufwändige Bohrung notwendig. Solche Erdwärmepumpen waren deshalb im vergangenen Jahr weniger angesagt. Hier ging der Umsatz im Vergleich zu 2018 um 15 Prozent zurück.
Nachfrageschub durch mehr Förderung
Die Wärmepumpenbranche ist zuversichtlich, dass sich immer mehr Hauseigentümer in Deutschland für solche Geräte entscheiden. Denn viele Heizungen sind hoffnungslos veraltet. Neue Förderrichtlinien könnten hier für einen Modernisierungsschub sorgen, der auch die Absatzzahlen der Wärmepumpen weiter nach oben treiben könnte. „Zumindest der Informationsbedarf bei Hausbesitzern und Bauherren, Handwerkern und Planern ist, gemessen an den eingehenden Anfragen in unserer Berliner Geschäftsstelle, schon im ersten Monat des neuen Jahrzehnts spürbar gestiegen,“ weiß Paul Waning, Vorstandsvorsitzender des BWP. So unterstützt die Bundesregierung den Einbau von Wärmepumpen inzwischen mit einem Investitionszuschuss von bis zu 35 Prozent im Neubau und bei der Modernisierung. Wenn eine Wärmepumpe eine Ölheizung ersetzt, gibt es sogar 45 Prozent Zuschuss.
Solarstrom nutzen
Entscheidende Stellschraube für den Klimaschutz ist allerdings der Betrieb mit Solarstrom. Dies ist zudem eine perfekte Möglichkeit, den Strom, der von einem Solardach oder einer Solarfassade erzeugt wird, direkt vor Ort zu nutzen.
Webinar am 11.3.2020: Dachintegration mit Solrif – Ein bewährtes System für moderne Optik
Unser Webinar am 11. März 2020 zeigt Architekten die vielfältigen Möglichkeiten der Dachintegration der Photovoltaik. Sie bietet einen Mehrwert für die Optik eines Gebäudes. Das Webinar veranstaltet die Redaktion der photovoltaik zusammen mit Ernst Schweizer und dem Architekturportal Solar Age.
Die Nutzung von Solaranlagen als Dachhaut erfreut sich immer größerer Beliebtheit. Solche dachintegrierten Photovoltaikgeneratoren bieten einen Mehrwert – sowohl wirtschaftlich als auch optisch. Eine sehr große Bandbreite von der einfachen Integration eines rechteckigen Feldes bis hin zu vollflächigen Dächern mit Einbauten ist möglich. Die Planung und Installation kann sehr einfach oder auch anspruchsvoll mit einem höheren Mehrwert sein.
Im gemeinsamen Webinar mit der Ernst Schweizer AG, photovoltaik und Solar Age am 11. März 2020 werden die Vorteile der Dachintegration und die vielfältigen Möglichkeiten vorgestellt, die sie für die Optik eines Gebäudes eröffnet.
Folgende Fragen stehen dabei im Mittelpunkt:
Welche Vorteile hat die Integration einer Solaranlage?
Wie erfolgt die Planung, Auslegung und Installation?
Welche Designmöglichkeiten gibt es hinsichtlich der Module und hinsichtlich der Dacheindeckung?
Welche Voraussetzungen muss das Dach für die Integration einer Solaranlage erfüllen (Neigung, Dachaufbau, Dachform)?
Wie sieht es aus mit Hinterlüftung, Dichtheit und Brandschutz?
Welche Zertifikate sind notwendig?
Wie wirtschaftlich ist ein Dach mit integrierter Solaranlage?
Wer vertreibt die Systeme und wo gibt es Hilfe und Unterstützung?
Profitieren Sie vom Fachwissen unseres Experten. Es referiert: Dr. Helge Hartwig, Ernst Schweizer AG
Moderation: Sven Ullrich, Chefredakteur von Solar Age
Wann? 11. März 2020, 15 bis 16:30 Uhr Kosten? kostenfrei
Das Webinar ist eine gemeinsame Veranstaltung von Ernst Schweizer AG, Solar Age, photovoltaik und Conexio GmbH und wird unterstützt von Aleo Solar, CS Wismar und Axsun.
Schweiz: Anlagenbetreiber müssen keine Messkosten bezahlen
Manche Netzbetreiber in der Schweiz verlangen von den Betreibern von Solaranlagen immer noch zusätzliche Gebühren für die Messung des eingespeisten Stroms. Das ist aber seit Beginn des Jahres 2018 nicht mehr zulässig, wie der Verband der unabhängigen Energieerzeuger mitteilt.
Der Schweizer Verband der unabhängigen Energieerzeuger (Vese) macht Anlagenbetreiber darauf aufmerksam, dass die Netzbetreiber keine Gebühren für das Einspeisen von Solarstrom erheben dürfen. Der Vese reagiert damit auf Berichte einiger seiner Mitglieder, die von den zuständigen Netzbetreibern zusätzliche Rechnungen bekommen, weil sie ihren Strom ins Netz einspeisen.
Messkosten auf Endverbraucher umlegen
Das sei aber gemäß Artikel 13a der Schweizerischen Stromversorgungsverordnung unzulässig, betont der Verband und stützt sich dabei auf eine entsprechende Einschätzung der Eidgenössischen Elektrizitätskommission (Elcom). „Sämtliche Messkosten sind anrechenbare Kosten und somit in die Tarife der Endverbraucher einzupreisen“, antwortet die Elcom auf eine entsprechende Anfrage der Vese. „Den Produzenten dürfen somit aufgrund des Ausspeiseprinzips keine Messkosten – sei es einmalig oder wiederkehrend – in Rechnung gestellt werden.“ Auch für Eigenverbrauchsanlagen mit Überschusseinspeisung gilt: Sie bezahlen auch die Netzentgelte für den jeweils geltenden Tarif ihrer Kundengruppe und keine zusätzlichen Messkosten für den eingespeisten Strom.
Zusatzgebühren zurückverlangen
Diese Regelung gilt sein 1. Januar 2018. Als einzige Ausnahme lässt die Elcom die Lastgangmessung von Erzeugungsanlage mit einer Leistung von mehr als 30 Kilowatt gelten, für die bis zum 31. Mai 2019 weiterhin zusätzliche Messkosten in Rechnung gestellt werden konnten. Das galt aber auch nur für Anlagen, die vor 2018 am Netz waren. Der Vese wird jetzt mit den Verteilnetzbetreibern ins Gespräche kommen, die immer noch zusätzliche Messkosten von den Anlagenbetreibern verlangen, um diese auf die geltenden Regelungen aufmerksam zu machen. Sollte ein Anlagenbetreiber zusätzliche Messkosten in Rechnung gestellt bekommen, so kann er bei seinem Netzbetreiber Beschwerde einlegen und die zu viel gezahlten Gebühren zurückverlagen, rät der Vese. (su)
Die Architektenkammer Berlin veranstaltet eine Seminarreihe zum Thema bauwerkintegrierte Photovoltaik. Sie will damit ihre Mitglieder dazu inspirieren, in Zukunft die Photovoltaik stärker beim Entwurf und bei der Planung der Gebäudehülle zu berücksichtigen.
Die Redaktionen von Solar Age und photovoltaik führen zusammen mit der BIPV-Beratungsstelle BAIP, der HTW Berlin und der Architektenkammer Berlin eine Seminarreihe zur bauwerkintegrierten Photovoltaik durch. Den Auftakt bildet ein Seminar, das den Teilnehmern anhand von Beispielen einen Überblick über die Möglichkeiten der Integration der Photovoltaik in die Architektur gibt. Außerdem bekommen sie einen Einblick in den technischen Rahmen der BIPV.
Technischen Rahmen abstecken
Hier geht es vor allem darum, wie die Solarfassaden und Photovoltaikdächer geplant und umgesetzt werden und welche Besonderheiten bezüglich des Brand- und Überspannungsschutzes zu beachten sind. Dazu kommen unter anderem noch Hinweise zu den Möglichkeiten, wie der Denkmalschutz von der Photovoltaik in Bestandsgebäude überzeugt werden kann.
Solarstrom im Gebäude nutzen
Die Teilnehmer bekommen aber auch Informationen darüber, wie der Strom aus der Fassade oder aus der Dachhaut im Gebäude verwendet werden kann. Dazu gehören Möglichkeiten der elektrischen Wärmeversorgung, der Nutzung von Brennstoffzellen und der Elektromobilität. Hier wird aber auch der derzeitige Rahmen der Belieferung der Mieter in Mehrfamilienhäusern umrissen.
Das erste Seminar findet am 2. April 2020 in den Räumen der Architektenkammer Berlin statt. Er richtet sich an Architekten und Architektinnen, die sich eine Überblick über die Gebäudeplanung mit Photovoltaik verschaffen wollen. Die weiteren Veranstaltungen in dieser Reihe finden am 21. und 28. April 2020 statt. Hier können Sie sich anmelden. (su)
Pariser Flughäfen bekommen Solarstrom – auch aus dachintegrierten Anlagen
Die Flughäfen in Paris werden ab kommendem Jahr teilweise mit Solarstrom betrieben. Dazu baut Urbasolar drei Solarparks. Weitere Anlagen – integriert in Parkplatzüberdachungen und auf dem Dach eines neuen Terminals – sollen in den kommenden Jahren dazukommen.
Der Projektentwickler Urbasolar wird in den Departements Gard, Var und Charente jeweils einen großen Solarpark errichten. Die Anlagen sollen noch im kommenden Jahr in Betrieb gehen. Um die Generatoren zu finanzieren, nimmt der Stromversorger Gazel Energie den Solarstrom ab und verkauft ihn an die Flughafengesellschaft Aéroports de Paris (ADP). Diese versorgt damit bilanziell die drei Pariser Flughäfen Charles-de-Gaulle, Orly und Le Bourget Photovoltaikanlagen bauen. Die drei beteiligten Unternehmen haben einen entsprechenden Stromliefervertrag über 21 Jahre abgeschlossen.
Zehn Prozent Sonnenanteil
Die drei Solarkraftwerke werden im kommenden Jahr in Betrieb gehen. Sie liefern dann insgesamt 47 Gigawattstunden Strom pro Jahr und decken damit etwa zehn Prozent des Strombedarfs der Flughäfen in Paris ab. Schließlich verbrauch ein Flughafen enorm viel Energie. Der in den drei Solarparks erzeugte Strom reicht aus, um etwa die Hälfte der für die Beleuchtung der Flughäfen benötigte Energie zu liefern.
Solarstrom vor Ort produzieren
Aber das Projekt ist nur der Anfang. „Der nächste Schritt wird sein, einen Teil unseres Verbrauchs selbst grün zu produzieren, wie wir es bereits für unseren Wärmebedarf tun“, erklärt Edward Arkwright, Vorstandsvorsitzender der ADP. „Wir bereiten bereits die Integration von Photovoltaikanlagen in neue Infrastrukturprojekte wie Parkplätze und Gebäude sowie in unseren neuen Terminal 4 vor.“ (su)
Almost half of Swiss homeowners opt for an in-roof system when they decide to use photovoltaics - mainly because of the aesthetic appeal. You can learn more about the advantages of integrating solar modules into the roof cladding in our webinar on 11 March.
In Switzerland, more than half of all homeowners decide to install a solar system in the case of roof renovation. Aesthetics play a decisive role here. These are the results of a recent survey of homeowners in Switzerland by researchers from the Institute for Economy and Ecology at the University of St. Gallen (IWÖ-HSG).
The aim of the scientists is to explore the conditions for the market development of solar roof systems after the end of financial support, which is scheduled for the year 2030. They want to better understand the preferences of homeowners regarding an investment in a solar system. For this reason, they asked 408 homeowners throughout Switzerland whether they would opt for a solar system if the roof of their building were to be renovated. Of those surveyed, 57 percent would choose a photovoltaic system. It was mainly women who were against a photovoltaic system. In addition to financial aspects, the scientists see aesthetic aspects as the main reason.
45 percent prefer roof integration
Because in a second question, the study participants were asked to answer which type of solar system they prefer: a roof-top system with standard modules or, as a premium variant, an in-roof system with high-quality modules. Here, more than half of the respondents who would invest in a solar system would opt for the less expensive variant. However, 45 percent of those who opt for a solar array would prefer the higher quality in-roof system.
Red and black cells are popular
This decision does not depend – as might be assumed – on the income or educational level of the respondents. Rather, even less affluent homeowners look to the solar system to blend in as well as possible with the overall appearance of the building. „This finding shows that product differentiation on the part of suppliers is very important for the maximum spread of solar systems,“ says Beatrice Petrovich of the IWÖ-HSG. She conducted the study together with Rolf Wüstenhagen and Stefanie Hille. For example, the survey showed that red and black solar cells are more popular than blue ones. In addition, homeowners attached importance to solar modules from Switzerland or at least from Europe. Modules from the Far East did not find too many enthusiasts among Swiss homeowners. (su)
To find out more about the aesthetic possibilities offered by in-roof modules and the advantages of integrating the solar system into the roof cladding, attend our webinar „Roof integration with Solrif – a proven system for modern optics“ on 11 March 2020, where you can register free of charge.
Am Rande des kleinen Örtchens Affoltern in schweizerischen Kanton Bern wurde ein altes und unter Denkmalschutz stehendes Gebäude komplett saniert. Die Energieversorgung übernimmt jetzt eine riesige Indachphotovoltaikanlage, die außerdem gleichzeitig die Dacheindeckung ist. Wie das funktioniert, erfahren Sie in unserem Webinar am 11. März 2020.
Das alte Glaserhaus in Affoltern in der Schweiz stand 250 Jahre nach seiner Erbauung kurz vor dem Verfall. Die vielen kleinen Glasscheiben der Fenster waren zersprungen und das Dach war undicht. Die Denkmalpflege des schweizerischen Kantons Bern hatte das Gebäude schon abgeschrieben. Denn diese ist für Affoltern im Emmental zuständig.
Glaserhaus komplett saniert
Doch vor wenigen Jahren haben die beiden Architekten Christian und Elisabeth Anliker begonnen, das Gebäude komplett zu sanieren. An die alte Glaserfamilie, die das Haus einst erbaut hat, erinnert noch heute die üppige Fensterfront auf der Südseite des Gebäudes. Außerdem sind noch viele Elemente aus dem Jahr 1765 erhalten, als das Haus gebaut wurde. Diese sollten bei der Renovierung und Sanierung so weit wie möglich erhalten bleiben. Deshalb wurde das Gebäude zunächst sorgfältig zurückgebaut und die alten Baumaterialien beim Wiederaufbau wieder eingesetzt. Kombiniert wurde die alte Gebäudehülle mit modernster Gebäudetechnik und Ästhetik.
Sonne liefert Strom für die Wärmpumpe
Die Heizung auf eine moderne Wärmepumpe umgestellt. Den Strom für die Wärmepumpe liefert eine riesige Photovoltaikanlage, die das komplette Dach bedeckt und gleichzeitig als wasserführende Schicht und somit als Dacheindeckung dient. Diese Indachanlage war eine Lösung, um den Denkmalschutz mit der Photovoltaikanlage zu versöhnen. Denn diese sollte auf jeden Fall die komplette Energie für das Haus liefern. Das stand von vorn herein fest. Wie solche Indachlösungen aufgebaut werden können und welche Vorteile sie im Vergleich zu einer herkömmlichen Dacheideckung mit zusätzlicher Solaranlage haben, erfahren Sie in unserem Webinar am 11. März 2020. Hier können Sie sich kostenlos amelden.
Welchen Energiestandard das Gebäude erreicht hat und wie das gesamte Energiesystem aufgebaut ist, lesen Sie im vollständigen Projektbericht, den Sie in der Datenbank von Solar Age finden. Die Nutzung der Datenbank ist nach Registrierung und Anmeldung kostenfrei.
Teams für den Solar Decathlon Europe 2021 nominiert
Die Jury des Solar Decathlon Europe hat die Vorauswahl getroffen, welche Teams am studentischen Architekturwettbewerb im kommenden Jahr in Wuppertal teilnehmen dürfen. Insgesamt haben es 18 nachhaltige Architekturvorschläge in die Endausscheidung geschafft.
Am Solar Decathlon Europe des kommenden Jahres (SDE21) werden 18 Teams aus elf Ländern teilnehmen. Der studentische Wettbewerb um innovative solare und nachhaltige Gebäude findet im kommenden Jahr im Sommer in Wuppertal statt. Die Jury hat aus einer Vielzahl von Bewerbungen jetzt die Vorauswahl der Teams getroffen, die ihre Projekte vorstellen und unter Beweis stellen dürfen, dass diese den anspruchsvollen Kriterien der Jury auch in der Praxis standhalten.
SDE19/EMI Non ProEnergiewende in den Städten bewältigen
Die Teams werden ihre Gebäude im kommenden Sommer auf dem Campus des SDE21 aufbauen und danach müssen sie in zehn Disziplinen gegeneinander antreten. Dabei geht es neben einer architektonisch ansprechenden Lösung für urbane Räume auch um die Energieeffizienz, die energetische Eigenversorgung, die Verwendung nachhaltiger Baumaterialien und weitere Kriterien für eine moderne Architektur. „In einem Jahrhundert der Urbanisierung und des Klimawandels ist es notwendig, die Energiewende in Städten jetzt zu bewältigen“, erklärt Daniel Lorberg von der Universität Wuppertal und Projektleiter des SDE21 den Ansatz, in diesem Jahr vor allem Gebäude für urbane Räume in den Mittelpunkt des Wettbewerbs zu stellen.
Teams kommen aus Europa und Asien
Nach dem eigentlichen Wettbewerb werden die Gebäude noch bis zum Ende des Sommers stehen bleiben. In dieser Zeit können sich Besucher des Campus‘ weiter eingehend über die Lösungen informieren, die die Studenten der 18 Teams gefunden haben. Dies kommen vor allem aus Europa. So ist Deutschland mit sechs Teams vertreten. Zwei weitere Teams kommen aus den Niederlanden. Außerdem hat es jeweils ein Team aus Schweden, der Tschechischen Republik, Dänemark, Frankreich, Rumänien, Ungarn und Spanien in die Endausscheidung geschafft. Aber auch Asien ist mit zwei Teams aus Thailand und einem Team aus Taiwan vertreten. (su)
Fast die Hälfte der Schweizer Hauseigentümer setzen auf eine Indachanlage, wenn sie sich für die Photovoltaik entscheiden – vor allem aufgrund der Ästhetik. Welche Vorteile die Integration der Solarmodule in die Dachhaut noch hat, erfahren Sie in unserem Webinar am 11. März.
In der Schweiz entscheidet sich über die Hälfte der Hausbesitzer für die Installation einer Solaranlagen im Falle einer Dachsanierung. Dabei spielt die Ästhetik eine entscheidende Rolle. Das sind die Ergebnisse einer aktuellen Befragung von Hausbesitzern in der Schweiz durch Forscher des Instituts für Wirtschaft und Ökologie der Universität St. Gallen (IWÖ-HSG).
Ziel der Wissenschaftler ist es, die Voraussetzungen für die Marktentwicklung von solaren Dachanlagen nach dem Ende der finanziellen Unterstützung auszuloten, das für das Jahr 2030 ansteht. Sie wollen die Präferenzen der Hauseigentümer bezüglich einer Investition in eine Solaranlage besser verstehen. Deshalb haben sie 408 Hauseigentümer in der ganzen Schweiz zunächst befragt, ob sie sich für eine Solaranlagen entscheiden würden, wenn das Dach ihres Gebäude saniert wird. Von den Befragten würden sich 57 Prozent für eine Solaranlage entscheiden. Dabei waren es vor allem Frauen, die sich gegen eine Photovoltaikanlage aussprechen. Als Grund sehen die Wissenschaftler neben finanziellen vor allem ästhetische Aspekte.
45 Prozent setzen auf Dachintegration
Denn in einer zweiten Frage sollten die Studienteilnehmer darauf antworten, welche Art von Solaranlagen sie bevorzugen: eine Aufdachanlage mit Standardmodulen oder als Premiumvariante eine Indachanlage mit hochwertigen Modulen. Hier würde sich mehr als die Hälfte der Befragten, die in eine Solaranlage investieren würden, für die preiswertere Variante entscheiden. Doch immerhin 45 Prozent derjenigen, die sich für eine Solaranlage entscheiden, würde die hochwertigere Indachanlage bevorzugen.
Rote und schwarze Zellen sind beliebt
Diese Entscheidung hängt nicht – wie zu vermuten wäre – vom Einkommen oder vom Bildungsstand der Befragten ab. Vielmehr schauen auch weniger wohlhabende Hauseigentümer darauf, dass sich die Solaranlage möglichst gut in die Gesamtoptik des Gebäudes einfügt. „Dieser Befund zeigt, dass eine Produktdifferenzierung vonseiten der Anbieter sehr wichtig ist für die maximale Verbreitung von Solaranlagen“, betont Beatrice Petrovich vom IWÖ-HSG. Sie hat zusammen mit Rolf Wüstenhagen und Stefanie Hille die Studie durchgeführt. So ergab die Befragung beispielsweise, dass rote und schwarze Solarzellen beliebter sind als blaue. Zudem legten die Hauseigentümer wert auf Solarmodule aus der Schweiz oder zumindest aus Europa. Module aus Fernost fanden nicht allzu viele Liebhaber unter den Schweizer Hausbesitzern. (su)
Welche ästhetischen Möglichkeiten es mit Indachmodulen gibt und welche Vorteile die Integration der Solaranlage in die Dachhaut noch hat, erfahren Sie in unserem Webinar „Dachintegration mit Solrif – ein bewährtes System für moderne Optik“ am 11. März 2020. Hier können Sie sich kostenlos anmelden.
Peter Röthlisberger from Solaxess: „We can offer any colour“
The Swiss manufacturer Solaxess produces special films for white solar modules. In the meantime there is a technological evolution. Sales Manager Peter Röthlisberger explains the advantages it has.
The special film from Solaxess has not even been on the market for that long. Now there is a further development. What problems does it solve? Peter Röthlisberger: We have developed a nice solution for architects. But it is also quite price-intensive. The module manufacturer had to apply our film in a composite of four layers. This consists of the solar film, two encapsulation films and an ETFE film as the top layer. This makes production very demanding. In addition, a distance of five millimeters from the module edge is necessary. Up to now, this free area has had to be printed in the case of a frameless module.
Why do you need this space?
The first version of the Solaxessfilm could not reach the edge of the module because we did not want direct contact with the environment. This will change with the new version. Then the module producer can cover the entire panel with the film. The application is also much easier because only two layers will be applied in the future.
The version then consists of less than four layers?
Exactly. Together with the CSEM researchers, we have developed a new version that only consists of two layers, the actual Solaxess foil and an ETFE layer. The manufacturer no longer needs to apply the new foil to the top side of the module, but can also laminate it under glass. This eliminates the two encapsulation foils.
What does this solution look like in concrete terms?
In the first step, this will be an additional glass that the manufacturer applies to the actual module. But in the future he will also be able to integrate our film directly into the module. Then the ETFE can also be eliminated. This will make production easier and cheaper. So with our solution, there will be different module surfaces – depending on the needs and wishes of the customer: glass or ETFE.
When will the new version be available?
The production equipment has now arrived and we expect to start producing the first square metres in spring, between March and May. We will then start certification and will offer the further developed product on the market later this year. It will be possible to integrate the film during the summer months.
Will the current version with the four layers still be available?
At the moment, it will still be available. Customers will then be able to choose between a module surface made of matt and easy-to-clean ETFE or the smoother glass version. As soon as we have obtained the certifications for the second variant, it is quite possible that we will stop the production of the first variant. This is because it is optically softer due to the ETFE foil in comparison to glass. But it is more complicated to handle and therefore more expensive.
By how much will the price of a white module drop?
The price of our solution is reduced by about two thirds with the new variant. This brings us to the same range as the printed modules. This is because a full-surface print costs between 30 and 60 Euros per square meter, depending on which colour is used and the thickness of the print. Since our approach is that solar technology is no longer visible, a very thick print would be necessary. With our new variant we are below that in terms of price. In addition, the modules printed so densely lose 70 or sometimes even 90 percent of their power. With our film, the power loss for white modules is between 40 and 45 percent. With grey and darker colours, even more power remains. For terracotta-coloured modules, the loss is a manageable 20 to 30 percent.
But with printing you are more flexible when it comes to colour?
We will not only offer film for white modules, but in future we will also produce darker colours. We will be able to reproduce practically any desired colour. Initially, in addition to white there will also be shades of gray and brick-coloured films – in each case without the solar cells being visible. For individual markets, other colours are also conceivable. But it is also possible that we will produce certain colours exclusively for customers. If, for example, the German Post wants to have modules in its yellow, it would be very easy to talk to us.
The interview was led by Sven Ullrich.
You can read the complete interview in issue 01/2020 of the trade journal photovoltaik.
Recently, Solaxess has equipped further façades in Uppsala, Sweden, with white solar modules. Club members of Solar Age can find a complete report in the project database of the architecture portal.
Oft stößt die Installation einer Solaranlage auf Dächern von historischen Gebäuden oder Häusern in alten Ortskernen auf den Widerstand der Denkmalschutzbehörden. Doch mit farbigen Modulen ist auch das möglich. Wie das geht erfahren Sie in unserem Webinar zur Dachintegration am 11. März.
Bisher standen Denkmalschutzbehörden der Photovoltaikbranche eher unversöhnlich gegenüber. Sie haben dafür zu sorgen, dass die alten Ortskerne ihr ursprüngliches Erscheinungsbild behalten. Da sind Photovoltaikanlagen auf den Dächern eine Unmöglichkeit.
Wie der Denkmalschutz mit der Photovoltaik versöhnt werden kann, zeigt eine gelungene Sanierung eines Bauernhauses im Ecuvillens, einer kleinen Gemeinde im Schweizer Kanton Fribourg. Denn dort wurden die bisherigen terracottabarbenen Dachziegel durch farblich an das Ortsbild angepasste Solarmodule ersetzt. Die Module sind eine spezielle Entwicklung Centre Suisse d’Electronique et de Microtechnique (CSEM) aus in Neuchâtel.
Die Alterung nachgebildet
Die Deckgläser sind mit einer speziellen Farbe bedruckt. Um anch den letzten Schimmer von Solartechnologie zum Verschwinden zu bringen, wurden die Leitungsbändchen der Solarzellen eingefärbt. Zusätzlich dazu hat der Modulhersteller eine schwarze Folie hinter die Solarzellen in die Module laminiert. Dadurch wird der Alterungsprozess der herkömmlichen Dachziegel nachgebildet. Denn letztere fangen schon nach kurzer Zeit an zu verwittern und der ursprüngliche klare Terracottafarbton wird dunkler.
Unterschied zum Ziegeldach verschwindet
Die Solarmodule sind zudem gut in die Dachaut integriert. Da die Anschlüsse an die Dachkanten mit terracottafarbenen Blechen ausgeführt wurden, ist der Unterschied zu einem Ziegeldach kaum noch zu erkennen. Eine ausführliche Beschreibung des Projekts finden Sie in der Projektdatenbank von Solar Age.
Wie solche Solardächer geplant und installiert werden, welche Möglichkeiten sich mit der dachintegrierten Photovoltaik eröffnen, erfahren Sie in unserem Webinar „Dachintegration mit Solrif“, das Solar Age zusammen mit Ernst Schweizer und dem Fachmagazin photovoltaik durchführt. Hier können Sie sich kostenlos anmelden.
In Altusried hat sich der Architekt eines Einfamilienhauses für einen Indachanlage entschieden. Er zeigt damit, dass sich selbst komplexe Dächer vollflächig mit Solarmodulen eindecken lassen. Wie so etwas realisierbar ist, erfahren Sie in unserem nächsten Webinar zur Indachphotovoltaik am 11. März 2020.
Der häufigste Grund, warum Bauherren sich für eine Indachanlage entscheiden, ist die Ästhetik. Vor allem wenn die Dächer vollflächig mit einer Photovoltaikanlage eingedeckt sind, fügt sich der Stromerzeuger harmonisch in die Gebäudegestaltung ein oder weicht sogar ganz aus der optischen Wahrnehmung des Betrachters.
Kehlen mit Sondermodulen gedeckt
Wie das gelingen kann, zeigt der Neubau eines Einfamilienhauses in Altusried bei Kempten im Allgäu. Dort hat sich der Architekt für eine Kompletteindeckung des Daches mit Solrif entschieden. Um eine einheitliche funktionale Ästhetik zu erhalten, wurden an den Kehlen, wo die Schrägdächer der beiden Gebäudeteile aneinanderstoßen, Sondermodule eingesetzt.
Solar aktiv bis zur Traufe
Auf diese Weise wurden auch die Anschlüsse der Solaranlage an die Dachkanten realisiert. Denn eines der beiden Dächer wird durch ein Dachfenster vertikal halbiert. Die Verlängerung des Dachfensters hin zur Traufe konnte so ebenfalls mit solaraktiven Modulen realisiert werden. Das Gleiche könnte man mit etwas weniger Aufwand auch mit Blindmodulen realisieren.
Wie solche Systeme aufgebaut sind, wie sie ausgelegt und installiert werden, erfahren Sie im Webinar „Dachintegration mit Solrif“, das Solar Age zusammen mit Ernst Schweizer und dem Fachmagazin photovoltaik durchführt. Hier können Sie sich kostenlos anmelden. (su)
Sol Aid setzt beim Neubau seines Unternehmenssitzes nicht nur auf Solarstrom, sondern auf die vollständige Elektrifizierung des Gebäudes. Die Solaranlage auf dem Dach liefert nicht nur Energie für die herkömmlichen Verbraucher, sondern auch für die Heizung mit Infrarotpaneelen.
Der Photovoltaikprojektierer Sol Aid hat sich bei der Erweiterung seines Firmensitzes im oberpfälzischen Auerbach für ein außergewöhnliches Energiekonzept entschieden, dass Schule machen könnte. Denn das Unternehmen setzt auf eine Wärmeversorgung mit Infrarotpaneele, die fast ausschließlich mit Solarstrom betrieben werden, die auf dem Dach des gerade fertiggestellten Neubaus installiert sind. Zusätzlich dazu ist noch ein Speicher ins Energiekonzept eingebunden, der den Eigenverbrauch und die Autarkie weiter nach oben treibt.
Fast komplett autark
Denn das Gebäude kann zu 90 Prozent mit selbst produziertem Solarstrom betrieben werden. Neben den firmeneigenen Elektroautos und anderen Verbrauchern wie Beleuchtung, Bürogeräte, Computerserver und Werkzeuge nutzen Infrarotpaneele den Strom vom Dach für die Beheizung des neuen Domizils von Sol Aid. Wie sich diese ästhetisch in den Räumen machen und wie das gesamte Energiekonzept aussieht, lesen Sie im aktuellen Dossier, das Sie in der Projektdatenbank von Solar Age finden. (su)
Das Rathaus in Stuttgart hat eine neue Dacheindeckung bekommen. Ein Teil davon wurde mit Solarmodulen realisiert. Wie solche Lösungen ausgelegt und installiert werden und welche Vorteile sie haben, erfahren Sie in unserem Webinar am 11. März 2020.
Das Rathaus der baden-württembergischen Landeshauptstadt Stuttgart wurde im Rahmen einer Sanierung mit einer Photovoltaikanlage ausgestattet. Allerdings sollte die Anlage möglichst groß werden. Da der Dachstuhl jedoch nicht für eine schwere Aufdachanlage ausgelegt war, hat sich das Regierungspräsidium Stuttgart als Bauherr dafür entschieden, die Solarmodule in die Dachhaut zu integrieren.
Solarmodule ersetzen die Dachhaut
Denn neben dem hervorragenden Erscheinungsbild hat die Indachanlage den Vorteil, dass die Dachkonstruktion im Vergleich zu einer Aufdachanlagen ein geringeres Gewicht tragen muss. Denn in diesem Falle muss das Dach nicht vorher mit Ziegeln eingedeckt und danach zusätzlich eine Solaranlage installiert werden. Vielmehr ersetzen die Solarmodule einen Teil der Dachhaut.
Fast 85 Kilowatt installiert
Auf diese Weise ist es gelungen, das Dach mit 282 Modulen des Herstellers Aleo Solar mit Sitz im brandenburgischen Prenzlau zu bestücken. Als Montagelösung haben sich die Planer von En Solar aus Kornwestheim für das System Solrif von Ernst Schweizer entschieden. Insgesamt konnte das Dach dadurch mit einer Solarleistung von 84,6 Kilowatt aktiviert werden. Andernfalls wäre nur ein Bruchteil dieser Leistung möglich gewesen.
Wie solche Systeme aufgebaut sind, wie sie ausgelegt und installiert werden, erfahren Sie im Webinar „Dachintegration mit Solrif“, das Solar Age zusammen mit Ernst Schweizer und dem Fachmagazin photovoltaik durchführt. Hier können Sie sich kostenlos anmelden. (su)
Weber Haus stattet alle seine Gebäude standardmäßig mit einem Ökostrompaket aus. Mit Photovoltaik, Speicher und Wärmepumpe erreichen die Gebäude dann den Standard KfW-Effizienzhaus 40 Plus.
Der Fertighausanbieter Weber Haus mit Sitz im badischen Rheinau-Linx stattet alle Gebäude, die die Kunden in diesem Jahr in Auftrag gegeben, mit dem Ökostrompaket Home for Future aus. Das besteht aus einer Photovoltaikanlage, einem Speicher und einer Luft-Luft-Wärmepumpe. Damit begeht das Unternehmen nicht nur sein 60-jähriges Firmenjubiläum, sondern bringt den Häuslebauern auch den Umstieg auf Erneuerbare nahe. Als Partner hat Weber Haus den Leipziger Speicherhersteller Senec gewonnen, der inzwischen auch Solarmodule im Komplettpaket mit einem Speicher im Portfolio hat.
Strom auch bei Netzausfall
Die Grundausstattung aller Häuser besteht aus zwölf Solarmodulen mit einer Leistung von vier Kilowatt und einem Stromspeicher mit einer Kapazität von fünf Kilowattstunden. Dieser hat eine Schnittstelle zur Wärmepumpe. Dadurch kann der Hauseigentümer seine Räume möglichst ausschließlich mit Ökostrom vom Dach beheizen. Außerdem hat der Speicher eine Notstromfunktion.
Größeres Paket für mehr Stromverbrauch
Auf Wunsch kann der Bauherr aber auch eine größere Solaranlagen mit einer Leistung von 9,9 Kilowatt bekommen. Dann wird ein Speicher mit einem Volumen von zehn Kilowattstunden eingebaut. Das ist vor allem dann sinnvoll, wenn entweder der Stromverbrauch im Gebäude sehr hoch ist oder eine Elektroauto mit dem Solarstrom betankt wird. Dann wird zudem noch ein Ladepunkt installiert. Außerdem kann der Hauseigentümer dann ein Jahr lang die mobile Senec Cloud ein Jahr lang kostenfrei nutzen. Mit diesem Zusatzpaket kann er sein Auto auch unterwegs an mehr als 30.000 Ladepunkten im Ladenetz der EnBW mit dem eigenen Solarstrom beladen. Sollte der Hauseigentümer nicht den kompletten Strom selbst verbrauchen, kann er ihn ins Netz einspeisen und bekommt dafür die EEG-Vergütung.
Komplette KfW-Förderung möglich
In Verbindung mit der gedämmten Gebäudehülle erreicht so jedes Weber Haus den Standard KfW-Effizienzhaus 40 Plus. Damit bekommen die Bauherren die volle Förderung der KfW für energieeffizientes Bauen. Die besteht aus einem zinsgünstigen Förderkredit in Höhe von maximal 120.000 Euro. Davon muss der Hauseigentümer aber nur 90.000 Euro zurückzahlen, da er einen Tilgungszuschuss von 25 Prozent bekommt. (su)
Solar Age: Infoportal für Architekten fortan kostenfrei
Das B2B-Webportal Solar Age aus Berlin öffnet seine Pforten. Das kostenpflichtige Abo wird durch den freien Zugang ersetzt. Das Passwort bekommen die Nutzer nach der Registrierung zugesandt.
Das erfolgreiche B2B-Portal Solar Age wird künftig auf kostenpflichtige Abonnements verzichten. Das gaben Herausgeber Heiko Schwarzburger und Chefredakteur Sven Ullrich in Berlin bekannt. „Im ersten Jahr des Betriebs erwies sich das Portal als großer Erfolg“, urteilt Heiko Schwarzburger, der zugleich Chefredakteur des Fachmagazins photovoltaik ist. „Mit unseren vielfältigen Aktivitäten ist es gelungen, eine Community für solare Architektur und Gebäudeintegration aufzubauen.“
Das Portal richtet sich an Architekten, Gebäudeplaner, TGA-Fachplaner, Gebäudeenergieberater und die Immobilienwirtschaft.
Reichweite erhöhen
Nun gehe es darum, die Mitgliederzahl weiter zu vergrößern und die Reichweite des wöchentlichen Newsletters zu erhöhen. Zudem bietet Solar Age seit vergangenem Jahr auch Webinare und Videos rund um die solare Architektur an.
Seit dem Start vor rund 15 Monaten ist die Produktdatenbank auf 530 solare Bauprodukte und Produkte zur E-Mobilität angewachsen. Die Datenbank für Referenzobjekte beinhaltet bereits 155 Objekte weltweit.
Auch 2020 wird der Bestand an Produkten, Videos, Referenzgebäuden oder anderen nutzwertigen Informationen gepflegt und erweitert. Solar Age bietet Interessenten darüber hinaus einen Planungsleitfaden für Solarfassaden, der gemeinsam mit Valentin Software aus Berlin entwickelt wurde. (HS)
Elektromobilität braucht schnelleren Ausbau der Erneuerbaren
Die EU-Kommission hat die Förderung von Elektroautos genehmigt. Doch wenn die Zulassungszahlen steigen, muss der Ausbau von Ökostromanlagen schneller gehen. Welcher Zubau jährlich notwendig ist, steht in einer Studie vom BSW Solar, EUPD Research und The smarter E Europe.
Wie das Bundeswirtschaftsministerium mitteilt., hat die Europäische Kommission die höhere Förderung für Elektroautos genehmigt. Die Unterstützung wurde als Teil des im vergangenen Jahr beschlossenen Klimapakets aufgestockt und bis 2025 verlängert. Damit bekommen Käufer von Elektroautos, die bis zu 40.000 Euro kosten, 50 Prozent mehr Investitionszuschuss. Ist das Auto teurer, gibt es immerhin 25 mehr Förderung als bisher. Die angepasste Förderrichtlinie wird noch im Februar im Bundesanzeiger veröffentlicht.
Elektroautos müssen Ökostrom tanken
Sollten dadurch die Zulassungszahlen der Elektroautos steigen, sind aber nicht nur mehr Ladesäulen notwendig, sondern auch der schnellere Ausbau von Ökostromanlagen, wie Carsten Körnig, Hauptgeschäftsführer des Bundesverbandes Solarwirtschaft (BSW Solar) betont. Andernfalls werden die Emissionen nur verlagert, aber nicht verringert. „Damit die Elektromobilität tatsächlich dem Klimaschutz dient, muss das Ausbautempo der Solarenergie nun schleunigst erhöht werden, müssen Marktbarrieren wie der EEG-Solardeckel endlich fallen“, erklärt Körnig.
Zehn Gigawatt pro Jahr sind notwendig
Der BSW Solar rechnet damit, dass bis 2030 durch die Verbreitung der Elektromobilität und die zunehmende Elektrifizierung anderer Sektoren der Strombedarf in Deutschland um mehr als 20 Prozent steigt. Gleichzeitig gehen Kern- und Kohlekraftwerke vom Netz. Um genügend Strom zur Vergütung zu haben, müsste der Zubau der Photovoltaik auf zehn Gigawatt pro Jahr steigen. Das ist eines der zentralen Ergebnisse einer aktuellen Studie zur Entwicklung des Strommarktes, die der BSW Solar zusammen mit dem Marktforschungsinstitut EUPD Research und der Messe The smarter E Europe erstellt hat.
Die Studie steht zum kostenlosen Download bereit. (su)
Die Heizstäbe in einem Mehrfamilienhaus in Linz werden mit Solarstrom vom Dach des Gebäudes versorgt. Über eine Cloud haben die Bewohner die Betriebsdaten jederzeit im Blick und können die Heizung sogar fernsteuern.
Nur 1,36 Kilowatt leistet die Anlage. Allerdings stehen 14 dieser kleinen Anlagen auf dem Dach eines Mehrfamilienhauses in Linz. Die Idee dahinter ist, dass jeder der kleinen Generatoren jeweils einer der 14 Wohnungen im Gebäude zugeordnet ist. Mit dem Strom heizen die Bewohner ihre Räume. Denn die Anlagen versorgen Heizstäbe des österreichischen Herstellers My PV mit Energie.
Solarstrom komplett vor Ort verbraucht
Wenn die Sonne scheint, erwärmen die Heizstäbe Wasser in den Speichern, die in den Wohnungen installiert sind. Damit können die Bewohner die Solarenergie auch nutzen, wenn Sonne nicht scheint. Auf diese Weise verbrauchen die Bewohner den gesamten Solarstrom vor Ort. Das hat den Vorteil, dass kein Wechselrichter installiert werden muss. Denn die Heizstäbe nutzen direkt den Gleichstrom aus den Solarmodulen. Das spart nicht nur Geld, sondern erhöht auch die Effizienz der Gesamtanlage.
Alle Betriebsparameter im Blick
Das Besondere an der Lösung in Linz: Die Installateure haben die einzelnen Heizstäbe über eine Cloud-Connect-Einheit mit den Solaranlagen auf dem Dach verbunden. Das ist ein kleines Kästchen, das die Leistungsdaten der Heizstäbe sammelt und in Echtzeit in einem Portal – der My-PV-Live-Cloud – darstellt. Damit haben Wohnungseigentümer, Vermieter und Wohnungsgesellschaften jederzeit und überall die aktuellen Betriebsparameter der Heizstäbe im Blick. Sie können auch mit dem Leistungssteller AC Thor verbunden werden.
Fernsteuerung möglich
Der Vorteil dieser Lösung ist aber nicht nur die Überwachung des Energieverbrauchs ganzer Mehrfamilienhäuser, sondern die Fernsteuerung und Fernwartung der einzelnen Elektroheizungen. Denn damit lassen sich die Einstellungen wie die Mindesttemperatur für verschiedene Uhrzeiten auch aus der Ferne einstellen. „Dabei gibt es keine Begrenzung der anzuschließenden Einheiten, weil wir die Cloud-Connect-Einheit individuell auf jeden unserer Kunden anpassen“, sagt Gerhard Rimpler, Geschäftsführer von My PV.
Die Cloudlösung kann demnächst auch in schon laufende Anlagen mit Heizstäben von My PV integriert werden. Dafür ist aber ein Update der Firmware notwendig. Deshalb wird My PV seine Cloud für solche Anlage spätestens ab Ende März 2020 anbieten. (su)
Der Wechselrichterhersteller Fronius hat seine Marketing- und Vertriebszentrale im österreichischen Pettenbach erweitert. Der Anbau ist mit einer vorstellten Fassade aus riesigen, semitransparenten Solarmodulen versehen. Zwei Wechselrichter von Fronius übernehmen dabei die Umwandlung des erzeugten Gleich- in Wechselstrom – für den Verbrauch vor Ort.
Es ist ein funktionaler Zweckbau. Doch auch solche Gebäude können mit einer hochwertigen Ästhetik daherkommen. Das Gebäude der Niederlassung von Fronius im oberösterreichischen Pettenbach ist dafür ein gelungenes Beispiel. Trotz der nüchternen Funktionalität hat der Architekt mit einer üppigen Glasfront über zwei Stockwerke eine offene Atmosphäre geschaffen, die zum Eintreten einlädt.
Diese Offenheit unterstreicht ein neuer Anbau, der sich an die bisherige Glasfront anschließt und der gerade fertig geworden ist. Er steht rechtwinklig zur bereits bestehenden Fassade, die dafür teilweise abgebaut wurde. Er besteht ebenfalls aus zwei Stockwerken und ist umlaufend mit einer riesigen Glasfront versehen.
Die großzügig geplanten Glasflächen wirken zwar einladend. Doch sie sorgen auch für einen hohen Energieeintrag ins Gebäude – vor allem in den Sommermonaten. Die Fassadenfront ist zudem fast exakt nach Süden ausgerichtet. Der Anbau hat auf der Ost- und Westseite zusätzliche Glasflächen. Das erhöht bei strahlendem Sonnenschein nicht nur den Kühlbedarf, sondern erschwert das Arbeiten in den Büros.
Genügend Licht fürs Büro
Die Lösung des Problems sollte für Fronius – ohnehin schon in der Solarenergiebranche unterwegs – nicht darin bestehen, die Sonne einfach nur auszusperren. Das Unternehmen will vielmehr die Energie nutzen, die in großen Mengen auf die Fassade trifft. Deshalb wurden diese mit Solarmodulen zu Verschattung versehen. Die Module müssen dabei gleich zwei gegensätzliche Eigenschaften haben. Auf der einen Seite müssen sie die Mitarbeiter im Gebäude vor der direkten Sonneneinstrahlung schützen. Andererseits sollen sie genügend Tageslicht durchlassen, damit die Mitarbeiter von Fronius in Pettenbach tagsüber nicht im Dunkeln sitzen.
Nur 80 Kilometer weiter östlich, in Amstetten, hat der Architekt einen Ansprechpartner gefunden, der die geforderten Module liefern konnte. Ertex Solar hat zunächst für die ursprüngliche Fassade 24 kristalline Glas-Glas-Module mit einer Gesamtleistung von 20 Kilowatt hergestellt. Die großen Abstände zwischen den Solarzellen sorgen dafür, dass genügend Licht in die Büros strahlt. Gleichzeitig verschatten sie die dahinter liegenden Räume.
Die vollständige Beschreibung dieses eindrucksvollen Projekts finden Sie als Dossier in der Projektdatenbank des Architetkurportals Solar Age. Die Nutzung der Datenbank ist nach Registrierung und Anmeldung kostenfrei.
Der Hersteller von Steildachlösungen Creaton hat ein neues Indachsystem auf den Markt gebracht. Es wurde zusammen mit dem Kölner Montagesystemhersteller Renusol entwickelt. Es kommt mit schwarzen Gleichstrommodulen von CS Wismar zum Kunden.
Die Verbindung von attraktiver Optik einer Indachanlage und Flexibilität eines Aufdachsystems waren Creaton und Renusol bei der Entwicklung seines ersten dachintegrierten Photovoltaiksystems wichtig. Das neue Montagesystem des Herstellers von Steildachlösungen aus Ton und Beton und des Kölner Montagesystemherstellers besteht aus einem speziellen Schienensystem. Das lässt sich so flexibel aufbauen wie eine normale Dachanlage, die in das Dach integriert wird.
Keine aufwändige Verkabelung notwendig
In das Montagesystem von Creaton legt der Handwerker Indachsolarmodule in elegantem Schwarz ein, die von der Sonnenstromfabrik in Wismar geliefert werden. Jedes dieser Module ist mit einem Mikrowechselrichter von Enphase Energy ausgestattet. Da das System dadurch auf Niederspannung bleibt, ist keine zusätzliche Verkabelung und Anbindung eines Wechselrichters notwendig. Auf diese Weise können auch Dachhandwerker das System im Neubau oder im Rahmen einer Dachsanierung problemlos in die Dachhaut integrieren. Creaton liefert das System komplett vorkonfektioniert inklusive Module und Dachanschlüsse auf die Baustelle.
Weitere Details zum neuen Indachsystem von Creaton erfahren Club Member von Solar Age in der Beschreibung in der Produktdatenbank. Dort finden Sie auch weitere Produkte rund um die bauwerkintegrierte Photovoltaik. (su)
Peter Röthlisberger von Solaxess: „Wir können jede Farbe bieten“
Der Schweizer Hersteller Solaxess produziert Spezialfolien für weiße Solarmodule. Inzwischen gibt es eine technologische Weiterentwicklung. Welche Vorteile sie hat, erklärt Vertriebsleiter Peter Röthlisberger.
Die spezielle Folie von Solaxess ist noch gar nicht so lange auf dem Markt. Jetzt gibt es eine Weiterentwicklung. Welche Probleme lösen Sie damit?
Peter Röthlisberger: Wir haben eine schöne Lösung für die Architekten entwickelt. Diese ist aber auch ziemlich preisintensiv. Denn unsere Folie musste der Modulhersteller in einem Verbund aus vier Lagen aufbringen. Dieser besteht aus der Solaxessfolie, zwei Verkapselungsfolien und als oberer Abschluss eine ETFE-Folie. Dadurch wird die Produktion sehr anspruchsvoll. Außerdem ist ein Abstand von fünf Millimetern zum Modulrand notwendig. Diese freie Fläche muss bisher bedruckt werden, wenn es sich um ein rahmenloses Modul handelt.
Warum braucht man diesen Abstand?
Die erste Version des Solaxessfilms konnte nicht bis zum Modulrand reichen, weil wir keinen direkten Kontakt mit der Umgebung wollten. Das wird sich mit der neuen Version ändern. Dann kann der Modulproduzent das gesamte Paneel mit der Folie belegen. Auch die Anwendung ist viel einfacher, weil nunmehr lediglich zwei Lagen aufgebracht werden.
Die Version besteht dann aus weniger als vier Lagen?
Genau. Zusammen mit den Forschern vom CSEM haben wir eine neue Version entwickelt, die nur noch aus zwei Lagen besteht, der eigentlichen Solaxessfolie und einer ETFE-Lage. Die neue Folie muss der Hersteller nicht mehr auf die Oberseite des Moduls aufbringen, sondern er kann sie auch unter Glas einlaminieren. Dadurch fallen die beiden Verkapselungsfolien weg.
Wie sieht diese Lösung dann konkret aus?
Im ersten Schritt wird das ein zusätzliches Glas sein, das der Produzent auf das eigentliche Modul aufbringt. Doch in Zukunft kann er unsere Folie auch direkt in das Modul integrieren. Dann kann das ETFE auch wegfallen. Dadurch wird die Herstellung einfacher und preiswerter. Mit unserer Lösung wird es also verschiedene Moduloberflächen geben – je nach Bedürfnis und Wunsch des Kunden: Glas oder ETFE.
Die Fragen stellte Sven Ullrich
Das vollständig Interview lesen Sie in der nächsten Ausgabe der Fachzeitschrift photovoltaik, die am 20. Februar 2020 erscheint. Hier können Sie das Heft auch einzeln bestellen.
Jüngst hat Solaxess im schwedischen Uppsala weitere Fassaden mit weißen Solarmodulen ausgestattet. Einen kompletten Bericht finden Clubmitglieder von Solar Age in unserer Projektdatenbank.
Nicht nur die sichtbare Solartechnik ist ein zentrales Merkmal des Neubaus der Wohnungsbaugenossenschaft Spar + Bau in Wilhelmshaven. Auch die Nutzung durch die Mieter ist eine Besonderheit. Denn sie bekommen eine komplette Energieflatrate.
Die Wohnungsgesellschaft Spar + Bau hat in Wilhelmshaven ein Mehrfamilienhaus errichtet, das sich zu zwei Dritteln selbst mit Energie versorgt. Diese wird in den Gebäuden verbraucht. Die Bewohner bekommen die gesamte Energie vom Vermieter geliefert – zum Festpreis, der in der Miete enthalten ist.
Schrägdach mit Solartechnik ausgestattet
Dieses Konzept der Energieflatrate hat Timo Leukefeld entwickelt. Der Solarprofessor von der TU Bergakademie Freiberg geht damit einen ganz neuen Weg, auch Mieter in die Energiewende mit einzubeziehen. Basis seines Konzepts – und auch den Neubaus in Wilhelmshaven – ist eine üppige Ausstattung mit Solartechnik. In das 50 Grad steile Dach sind zwei Reihen solarthermische Kollektoren integriert. Daran schließen sich drei Reihen Photovoltaikmodule an. Aus ästhetischen Gründen haben die Kollektoren die gleiche Größe wie die Module. Auf diese Weise wird zudem der gesamte Bau vereinfacht. Auch die Balkonbrüstungen sowie ein Teil der Kaltfassade sind mit Solarmodulen bestückt.
Speichertechnik installiert
Diese Strom- und Wärmeerzeuger liefern jedes Jahr 13.000 Kilowattstunden Solarenergie, die entweder sofort im Gebäude verbraucht oder in einen der drei Speicher zwischengelagert wird. Denn um den KfW-40-Plus-Standard zu erreichen und vor allem um den Eigenverbrauch in die Höhe zu treiben, wurden zwei Speicher mit jeweils 22 Kilowattstunden Kapazität installiert. Dazu kommt noch ein 20.000 Liter fassender Wärmespeicher. Dadurch kann die Solarthermie bis in den Winter hinein die Wärmversorgung abdecken. Die Spitzenlast deckt ein Erdgasbrennwertkessel ab.
Erfahrungen für weitere Neubauten sammeln
Auch die Stromversorgung übernehmen die Solarmodule zu zwei Dritteln. Den Rest kauf der Vermieter aus dem Netz dazu und schnürt zusammen mit dem Solarstrom vom Dach und aus der Fassade ein Gesamtpaket. Für die Spar + Bau ist es ein Pilotprojekt, mit dem die Wohnungsbaugenossenschaft Erfahrungen mit solchen Energiekonzepten machen will. Diese fließen dann in die Planung zukünftiger Neubauvorhaben ein, verspricht Peter Krupinski, Vorstand bei Spar + Bau. (su)
Club Member von Solar Age finden eine ausführliche Beschreibung des Energie- und Designkonzepts in unserer Projektdatenbank.
In Uppsala, Sweden, a real estate company has equipped several students' residences with solar energy systems. Three façades were activated with white solar panels. The modules integrate aesthetically perfectly into the appearance without the solar technology being visible.
Uppsala is not known as a sunny place. In high summer the sun shines in central Sweden for an average of ten hours, usually less. Nevertheless, the real estate company Heimstaden has decided to equip some of its student residences in the district of Flogsta with solar systems.
But they were not meant to be just any systems. The plan was to install as many modules as possible in such a way that they would supply enough electricity to operate the systems economically. This is possible even with the low solar radiation in the district in the west of the Swedish university town.
Custom-made modules
To implement exactly this plan, the flat roofs of the twelve student dormitories were equipped with modules. In addition, modules were attached to the unshaded and south-facing façades of three buildings. However, an acceptable solution had to be found. Because the modules had to blend in aesthetically as perfectly as possible with the bright façade without the solar technology itself being visible. The requirement could only be met with white solar modules.
This is not easy to implement, but is now possible. This is because the Estonian module manufacturer Naps has applied the solar film of the Swiss manufacturer Solaxess to the specially manufactured modules. This currently still consists of a special film that reflects only the complete visible part of the light spectrum. As a result, the human eye perceives the modules as white. The invisible light spectrum, on the other hand, is transmitted by the film to the solar cells below. This spectrum can be used to produce electricity.
How this works exactly, you can read in the detailed description of the project which you can find in the Solar Age database. (su)
Schweizer Versorger erhöhen Vergütung für Solarstrom
Viele Versorger in der Schweiz zahlen den Betreibern von Solaranlage eine höhere Vergütung. Durchschnittlich stieg der Tarif um vier Prozent.
Die Netzbetreiber in der Schweiz zahlen für eingespeisten Solarstrom mehr Geld. Das geht aus der aktuellen Erhebung des Verbands unabhängiger Energieerzeuger (Vese) hervor. Auf der Plattform PV Tarif sammelt der Verband die aktuellen Daten über die Tarife, die die Netzbetreiber an Besitzer von Solaranlagen zum Eigenverbrauch für den überschüssigen Reststrom zahlen, den sie nicht direkt vor Ort nutzen können. Für die Schweizer Betreiber von Eigenverbrauchsanlagen ist diese Vergütung eines der Standbeine für die Wirtschaftlichkeit zusätzlich zum Investitionszuschuss, den die Regierung zahlt.
Unterschiede bleiben groß
Demnach ist der über alle Netzbetreiber gewichtete Mittelwert einer Solaranlagen mit zehn Kilowatt Leistung zum Jahreswechsel leicht um vier Prozent von 8,8 auf 9,1 Rappen pro Kilowattstunde angestiegen. Diese Vergütung liege aber immer noch unter den Werten von 2015, wie der Vese über eine Anzeige auf der Onlineplattform EE-News bekannt gibt. Für die Steigerung ist allerdings vor allem die Anhebung der Rückliefertarife der Elektrizitätswerke des Kantons Zürich (EKZ) und der Services Industriels de Genève (SIG). So steigt der Tarif bei den EKZ von 5,53 auf 7,29 Rappen pro Kilowattstunde und der Genfer Versorger nimmt die Kilowattstunde Solarstrom inzwischen für 12,21 Rappen ab. Im vergangenen Jahr zahlte die SIG noch 10,97 Rappen pro Kilowattstunde. Allerdings bleibt die Spannweite der Vergütungen groß. Denn die Anlagenbetreiber bekommen zwischen 6,2 und 13 Rappen pro Kilowattstunde, abhängig vom Netzbetreiber, der den Strom abnimmt.
Tarif am Börsenstrompreis gekoppelt
Der Vese führt die Steigerung auf die Erkenntnis der Energieversorger zurück, dass sie in Zukunft mehr Solarstrom benötigen. Dazu kommen noch die gesetzlichen Änderungen. Denn inzwischen dürfen die Netzbetreiber die Kosten für die Solarstromproduktion an ihre gebundenen Kunden teilweise weitergeben. Zudem begründen die Versorger die Erhöhung mit einer Veränderung am Energiemarkt. Denn die Marktpreise für Strom steigen. Diesen Anstieg geben die Versorger jetzt an die Anlagenbetreiber weiter. Allerdings sieht der Vese hier die Gefahr, dass die Einspeisetarife wieder sinken werden. Denn das Bundesamt für Energie (BFE) hat registriert, dass die Börsenstrompreise im Jahr 2019 von 5,78 auf 4,16 Rappen pro Kilowattstunde gesunken sind. (su)
Die Einspeisung ins Netz lohnt sich für bauwerkintegrierte Solaranlagen trotz der Erhöhung kaum. Wie Sie mit Speichern den Eigenverbrauch des Stroms aus der Solarfassade und dem Solardach erhöhen können, erfahren Sie in der Library von Solar Age.
Smarter E Europe zeichnet intelligente Solarlösungen aus
Auch in diesem Jahr wird die Smarter E Europe wieder herausragende Lösungen und Projekte rund um die Solarenergie und Stromspeicher prämieren. Interessenten können jetzt ihre Bewerbungen abgeben.
Die Bewerbungsphase für den Smarter E Award hat begonnen. Wie der Veranstalter der Messe in München, Solar Promotion, mitteilt, können sich Projektierer und Betreiber von Solaranlagen sowie alle anderen, die eine innovative Idee für den Ausbau der Photovoltaik haben, für den Wettbewerb anmelden. Auch Architekten und Bauherren mit herausragenden BIPV-Anlagen können sich bewerben.
Preise in vier Kategorien
Die begehrten Preise werden auch in diesem Jahr wieder in vier Kategorien vergeben. So prämiert der Veranstalter der Smarter E Europe unter anderem herausragende Projekte zur Strom- und Wärmeerzeugung. In der Kategorie Smart Renewable Energy geht es um Lösungen der intelligenten Ökostromnutzung vor Ort. Weitere Preise gibt es für neue und innovative Photovoltaikprodukte. Das betrifft nicht nur Module oder Wechselrichter, sondern auch alle anderen Komponenten eines Solarsystems von der Unterkonstruktion über die Stromleitung bis hin zu Lösungen für die Wartung von Anlagen. In einer vierten Kategorie gibt es zudem noch Preise für innovative Speicherlösungen.
Interessenten können sich bis zum 31. März 2020 mit ihren Lösungen für den Wettbewerb anmelden. Informationen zur Registrierung und zu den Voraussetzungen für eine Teilnahme finden Sie auf der Internetseite der Smarter E Europe. (su)
New website shows possibilities of building integrated photovoltaics
A new website shows the possibilities of construction with photovoltaics. The aim is to encourage architects and building owners to develop new architectural concepts.
The University of Applied Sciences of Southern Switzerland (SUPSI), together with other project partners, has developed an information portal on building-integrated photovoltaics (BIPV). The corresponding website is now online. At the heart of the solar architecture portal are a project and a product database on BIPV.
Developing new concepts
The aim is to inform architects about the possibilities of integrating solar modules into the building envelope and thus promote the construction of solar buildings. By presenting architecture and technology, the project partners, which in addition to SUPSI also include the Swiss industry association Swissolar and the Swiss Federal Institute of Technology (ETH) in Zurich, want to encourage architects and builders to develop new building concepts. The main focus is on the aesthetic and constructive possibilities of integrating solar modules into the building envelope. These will be demonstrated by using project examples.
Ein Landwirt in Oberbayern hat sich eine Heutrocknunganlage installieren lassen. Um den hohen Strom- und Wärmebedarf nicht mit Mehrkosten erkaufen zu müssen, betreibt er sie mit einer Photovoltaikanlage, die gleichzeitig ein Teil der Dacheindeckung der Scheune ist.
In der Regel lassen Landwirte das Heu auf der Wiese nur vortrocknen, um wertvolle Inhaltsstoffe zu erhalten. Denn dort ist es schwer, eine gute Heuqualität zu erreichen, wenn es auf der Wiese komplett durchtrocknet. Zum einen muss das Gras älter gemäht werden damit es draußen auch wirklich ganz trocken wird. Zum anderen muss es dann mindestens drei Tage auf der Wiese bleiben. Doch schon nach drei Tagen gehen durch den Tau der Nächte etwa zwanzig Prozent der wertvollen Bestandteile des Grases und der Kräuter verloren. Dazu kommt noch das Witterungsrisiko.
Solarerträge und Heutrocknung fallen zusammen
Deshalb setzen viele Landwirte auf eine Heutrockungsanlage auf ihrem Hof. Sie fahren schon nach zwei Tagen das auf dem Feld vorgetrocknete Heu ein und lagern es in einer Scheune. Dort bläst ein Ventilator Luft aus einem Entfeuchter in das Heu. Diese trockene Luft saugt die Feuchtigkeit auf und strömt nach oben über einen Entlüftungsschacht nach draußen. Mit solchen Anlagen geht die Heutrocknung schneller und die wichtigen Bestandteile bleiben erhalten.
Die Heutrockner verbrauchen aber viel Strom für den Ventilator und den Entfeuchter. Um die zusätzlichen Energiekosten auszugleichen, hat sich Sepp Steinmüller, Landwirt und Eigentümer des Sockhofes im oberbayerischen Oberaudorf für eine Photovoltaikanlage entschieden, die den größten Teil des Stroms für seine Heutrocknungsanlage liefert. Schließlich wird das Heu vor allem in den Sommermonaten getrocknet, wenn Solaranlagen den höchsten Ertrag liefern.
Solaranlage ins Dach integriert
Da das Dach der Scheune auf dem Sockhof ohnehin saniert werden musste, kamen die Planer von Huber Dachtechnik auf die Idee, eine Indachanlage mit dem Solarif-System von ernst sSchweizer zu installieren. Denn diese hat den Vorteil, dass sie Dacheindeckung und Stromgenerator in Einem ist. Der Gebäudeeigentümer spart sich so komplett die Dachziegel. Die Solaranlage wird zur wasserführenden Schicht.
Welche Vorteile die Indachsolaranlage für die Heutrockung im Vergleich zur Aufdachanlage hat, lesen Sie in der ausführlichen Beschreibung des Projekts das Sie in der Datenbank von Solar Age finden. Die Nutzung der Datenbank ist nach Registrierung und Anmeldung kostenfrei. (su)
Wie ästhetische Solardächer geplant werden, erfahren Sie im Webinar „Dachintegration mit Solrif – Ein bewährtes System für moderne Optik“, das die Ernst Schweizer AG am 11. März 2020 zusammen mit Solar Age und der Fachzeitschrift photovoltaik durchführt. Hier können Sie sich kostenlos anmelden.
European solar community meets in Brussels in March
This year's European branch meeting will focus on the energy transition policy that the new EU Commission has announced. Until 15 February there will still be a discount on the ticket price.
This year’s Solar Power Summit will take place in Brussels on March the 25th, 2020. The conference organised by Solar Power Europe (SPE) will focus on the international challenges for photovoltaics. It will not only address technical innovations, but above all the development of framework conditions and business models in the various markets – also for building integration of solar technologies. SPE also attaches great importance to networking among the participants.
Green Deal on the test bench
In view of the new Green Deal announced by the new President of the European Commission, Ursula von der Leyen, the experts will, among others, examine the possible strategies. After all, the issue is that Europe wants to achieve climate neutrality by 2050. This requires not only an expansion path for renewable energies. Rather, framework conditions free of restrictions for this expansion are the basic prerequisite for the energy transition targeted by the Commission to succeed.
Quick decision is rewarded
SPE expects over 300 participants from more than 30 countries to attend the summit. They will listen with excitement to the analyses, findings and proposals of the more than 60 speakers. Interested participants can register for the summit on the SPE website. Quick decisions will be rewarded. Until February the 15th, 2020 there will be a discount of 150 Euro per ticket. (su)
Neue Webseite zeigt Möglichkeiten der Bauwerkintegrierten Photovoltaik
Ein neue Internetseite zeigt die Möglichkeiten des solaren Bauens. Ziel ist es, Architekten und Bauherren zu ermuntern, neue Gebäudekonzepte zu entwickeln.
Die Hochschule der Südschweiz (SUPSI) hat zusammen mit weiteren Projektpartnern ein Informationsportal zur bauwerkintegrierten Photovoltaik (BIPV) entwickelt. Die entsprechende Internetseite steht jetzt online. Herzstücke des Solararchitekturportals sind eine Projekt- und eine Produktdatenbank zum Thema BIPV.
Neue Konzepte entwickeln
Ziel ist es, die Architekten über die Möglichkeiten der Bauwerkintegration von Solarmodulen zu informieren und damit den Bau von Solargebäuden zu fördern. Denn durch die Präsentation von Architektur und Technologie wollen die Projektpartner, zu denen neben dem SUPSI auch der Schweizer Branchenverband Swissolar und die Eidgenössische Technische Hochschule (ETH) in Zürich gehören, Architekten und Bauherren ermuntern, neue Gebäudekonzepte zu entwickeln. Dabei geht es vor allem um die ästhetischen und konstruktiven Möglichkeiten, Solarmodule in die Gebäudehülle zu integrieren. Diese werden anhand von Projektbeispielen gezeigt.
Der schwedische Hersteller Midsummer hat einen neuen solaren Dachziegel entwickelt, der sich perfekt an die Umgebung anpasst. Viessmann hat sein Planungstool für die Heizungsauslegung um eine Heizlastberechnung erweitert. EHM Metering hat eine Lösung entwickelt, um verschiedene Stromverbräuche separat zu messen.
Solarer Dachziegel im Schwedenlook
Der neue solare Dachziegel von Midsummer kommt mit den gleichen Dimensionen wie die konventionellen Dachziegel Palema des schwedischen Baumaterialherstellers Bender zum Kunden. Er ersetzt fünf der herkömmlichen Dachziegel, was den Verschaltungsaufwand verringert. Zudem ist die Solartechnologie nicht mehr zu sehen.
Heizlast berechnen
Mit der neuen Version des Planungstools E-Planer von Viessmann können nicht nur elektrische Fußbodenheizungen und Infrarotpaneele berechnet werden. Er ermöglicht auch eine Berechnung der Heizlast. Dadurch kann der Planer die Heizungsauslegung noch präziser auf die Verhältnisse in den einzelnen Räumen auslegen.
Verbrauchsmengen separat messen
EMH Metering, hat eine intelligentes Messsystem entwickelt, das nicht nur für Industrieunternehmen, sondern auch für Betreiber von Arealnetzen gedacht ist. Denn mit dem DIZ-H kann der Eingenverbrauch von vor Ort produziertem Solarstrom vom restlichen Stromverbrauch abgegrenzt werden, für den die EEG-Umlage oder andere Abgaben fällig werden.
Weitere Details zu den hier vorgestellten Produkten lesen Club Member von Solar Age unserer Produktdatenbank.
Rheinenergie kooperiert mit Dachziegelwerke Nelskamp
Der Energieversorger Rheinenergie hat die solaren Dachzielgel von Nelskamp ins Portfolio aufgenommen. Die Planer beider Unternehmen legen die Anlagen in Verbindung mit dem Gebäudeenergiesystem gemeinsam aus.
Der Kölner Energieversorger Rheinenergie hat eine Vertriebspartnerschaft mit den Dachziegelwerken Nelskamp vereinbart. Das heißt konkret, dass die solaren Dachziegel des Herstellers aus dem niederrheinischen Schermbeck jetzt in die Dachplanungen von Rheinenergie mit einfließen. Auf diese Weise können Eigentümer von Ein- und Mehrfamilienhäusern über diese neue Kooperation unkompliziert aufeinander abgestimmte Energiesysteme bekommen, vom Dach bis zur Heizung.
Fachplaner legen das gesamte Energiesystem aus
Dazu konzipieren die Fachplaner beider Kooperationspartner gemeinsam mit den Bauherren, den Architekten und den Immobilienverwaltern die optimale Energieversorgung des Gebäudes, abgestimmt auf den jeweiligen Immobilientyp. Das fängt bei der Planung der Dacheindeckung mit den Solarziegeln von Nelskamp an und geht über die Einbindung von Speichern und Heizungsanlagen bis hin zur Nutzung der Energie möglichst vor Ort.
Ein ortsansässiger Handwerker wird danach die Anlagen installieren. Die Projektkoordination liegt in den Händen von Nelskamp und Rheinenergie. Am Ende steht die Übergabe eines schlüsselfertigen Gesamtenergiesystems für das Gebäude. (su)
Solarbranche kritisiert Erpressungsversuch der CDU
Die CDU will den Solardeckel nur abschaffen, wenn die SPD Zugeständnisse zu Einschnitten bei der Windkraft macht. Das stößt auf heftige Kritik in der Solarbranche, bei Handwerks- und Energieverbände und bei Umwelt- und Verbraucherschützern.
Der energiepolitische Sprecher der CDU-Fraktion im Bundestag, Joachim Pfeiffer, will die Abschaffung des Solardeckels zur Verhandlungsmasse machen. Er will damit von der SPD die Zustimmung zu Einschnitten bei der Windkraft abpressen.
Damit stößt er auf den heftigen Widerstand in der Solarbranche.„Solarenergie ist längst auch Sympathieträger konservativer Wählergruppen. Wer sie als Geisel nimmt und beim Klimaschutz bremst, wird an klimapolitischer Glaubwürdigkeit deutlich verlieren“, betont Carsten Körnig, Hauptgeschäftsführer des Bundesverbandes Solarwirtschaft (BSW Solar). „Entfesseln Sie die Solarenergie wie im Klimapaket versprochen!“, ruft er die Bundeskanzlerin Angela Merkel zum Handeln auf. „Wir haben keine Zeit mehr zu verlieren. Sie brauchen eine dynamische und lebendige Solarbranche an Ihrer Seite, um die Klimaschutzlücke zu schließen und eine Stromerzeugungslücke zu vermeiden!“
Offener Brief an Kabinett und Parlament
Gemeinsam mit zahlreichen anderen Verbänden, die mittelständische Unternehmen im Handwerk, in der Energie- und Immobilienwirtschaft vertreten, sowie mit Verbraucher- und Umweltschützern hat der BSW Solar einen offenen Brief an die Mitglieder der Bundesregierung und des Bundestages verfasst. In ihm fordern die Unterzeichner, dass das Bundeskabinett und auch das Parlament endlich Wort hält und den Förderstopp für Photovoltaikanlagen bei 52 Gigawatt installierter Leistung unverzüglich verhindert. Denn nur so kann ein erneuter Einbruch beim Solarstromausbau verhindert werden.
Rahmenbedingungen verbessern
Statt weiter zu bremsen, sollen endlich konkrete gesetzliche Schritte für den beschleunigten Ausbau erneuerbarer Energien verabschiedet werden. Diesbezüglich hat die Bundesregierung in Person von Bundeswirtschaftsminister Peter Altmaier (CDU) schon für den Herbst 2019 Nachfolgeregelungen für Mieterstromprojekte versprochen. Bis heute fehlt ein entsprechender Vorschlag.
SPD wehrt sich
Auch die SPD wehrt sich gegen den Pfeifferschen Erpressungsversuch. „Wer jetzt die Solarbranche als Faustpfand nimmt, um seine Interessen in den anderen Fragen durchzusetzen, schadet einem wichtigen Wirtschaftsfaktor und damit dem Industriestandort Deutschland“, zitiert das ZDF den Fraktionsvize der SPD im Bundestag, Matthias Miersch, unter Verweis auf die Dutsche Presseagentur (DPA). (su)
Lesen Sie dazu auch den aktuellen Blog des Chefredakteurs der Fachzeitschrift photovoltaik, Heiko Schwarzburger.
Die Energieversorgung der Gebäude einer schwimmende Solarsiedlung in Amsterdam läuft über ein gemeinsames Energiemanagement. Dadurch kann das ganze Quartier mit mehreren Solaranlagen, Wärmepumpen und Stromspeichern wie ein Gesamtsystem agieren.
Forscher des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM) haben ein neues Energiemanagement entwickelt. Damit können Photovoltaikanlagen, Batteriespeichersysteme, Wärmepumpen und Elektroautos miteinander gekoppelt werden. Auf diese Weise ist es möglich, einzelne Haushalte oder ganze Energiequartiere trotz der Schwankungen durch die fluktuierende Stromerzeugung mittels Solaranlage weitestgehend mit eigener regenerativer Energie zu versorgen.
Ein Energiemanagement für die ganze Gemeinschaft
Grundlage ist ein gängiges Energiemanagement, wie es schon in vielen Einzelgebäuden eingesetzt wird. „Das haben wir zu einem Energiemanagement für ganze Energiegemeinschaften weiterentwickelt“, beschreibt Matthias Klein den Ansatz. Er hat am Fraunhofer ITWM das Entwicklungsprojekt geleitet. Es ist modular aufgebaut und so kann es an die Gegebenheiten vor Ort angepasst werden, je nachdem, welche Komponenten installiert sind und wie viele Gebäude miteinander vernetzt werden. Das Energiemanagement analysiert zu jedem Zeitpunkt, wo die Energie hin soll und wohin nicht.
Mehrere Projekte mit dem neuen Energiemanagementsystem wurden schon umgesetzt. So wurden auch die Gebäude einer schwimmenden Solarsiedlung auf einem Kanal in Amsterdam über ein intelligentes Netz miteinander verbunden. Die Gebäude haben Solaranlagen auf dem Dach. Diese versorgen über dieses Netz die gesamte Siedlung mit Strom – sowohl für die elektrischen Verbraucher in den Haushalten als auch für die Pumpen zur Wärmeversorgung. Außerdem ist in jedem Gebäude ein Speicher installiert. Dazu kommen noch Ladesäulen für Elektroautos.
Wetterprognose verbessert die Speichereffizienz
Das neue Energiemanagement ist das Gehirn des Quartiersnetzes. So funktionieren die in den einzelnen Häusern installierten Photovoltaikanlagen, Wärmepumpen und Energiespeicher im Amsterdamer Quartier wie ein einziges großes System. Dadurch steigt nicht nur der Eigenverbrauch. Vielmehr müssen bei zu starker Sonneneinstrahlung die Solaranlagen nicht abgeregelt werden, wie das die Regelungen in den Niederlanden vorsehen.
Ein zusätzliches Prognosemodell verbessert außerdem die Effizienz der Stromspeicherung, indem es die voraussichtliche Sonneneinstrahlung mit dem Wärmeverbrauch abgleicht und so entweder Strom in die Wärmepumpen oder in den Stromspeicher schickt. Außerdem kann es den Zeitpunkt der Einspeicherung des Stroms optimal auswählen. (su)
Smarter E Europe zeichnet intelligente Lösungen aus
Auch in diesem Jahr wird die Smarter E Europe wieder herausragende Lösungen und Projekte rund um die Solarenergie und Stromspeicher prämieren. Interessenten können jetzt ihre Bewerbungen abgeben.
Die Bewerbungsphase für den Smarter E Award hat begonnen. Wie der Veranstalter der Messe in München, Solar Promotion, mitteilt, können sich Hersteller von Solarkomponenten und Speichern, Projektierer, Anlagenbetreiber und alle anderen, die eine innovative Idee für den Ausbau der Photovoltaik haben, für den Wettbewerb anmelden.
Preise in vier Kategorien
Die begehrten Preise werden auch in diesem Jahr wieder in vier Kategorien vergeben. So prämiert der Veranstalter der Smarter E Europe unter anderem herausragende Projekte zur Strom- und Wärmeerzeugung. In der Kategorie Smart Renewable Energy geht es um Lösungen der intelligenten Ökostromnutzung vor Ort. Weitere Preise gibt es für neue und innovative Photovoltaikprodukte. Das betrifft nicht nur Module oder Wechselrichter, sondern auch alle anderen Komponenten eines Solarsystems von der Unterkonstruktion über die Stromleitung bis hin zu Lösungen für die Wartung von Anlagen. In einer vierten Kategorie gibt es zudem noch Preise für innovative Speicherlösungen.
Interessenten können sich bis zum 31. März 2020 mit ihren Lösungen für den Wettbewerb anmelden. Informationen zur Registrierung und zu den Voraussetzungen für eine Teilnahme finden Sie auf der Internetseite der Smarter E Europe. (su)
Der BDEW zählt 24.000 öffentlich zugängliche Ladesäulen in Deutschland. Die meisten davon stehen in Bayern. München führt das Städteranking an.
In Deutschland waren Ende 2019 insgesamt etwa 24.000 öffentlich zugängliche Ladepunkte für Elektroautos installiert. Das geht aus den Daten des Bundesverbandes der Energie- und Wasserwirtschaft (BDEW) hervor. Das ist im Vergleich zum Vorjahr ein Zuwachs um 50 Prozent. Der Anteil der Schnellladestationen liegt bei etwa 15 Prozent.
60 Prozent mehr Ladesäulen im Ländle
Allein in Bayern ist die Zahl der öffentlich zugänglichen Elektrotankstellen um 56 Prozent von 3.618 auf 5.656 gewachsen. In Baden-Württemberg hat der Ausbau sogar um 60 Prozent zugelegt. Dort sind jetzt 4.094 Ladepunkte installiert. Im Vorjahr waren es noch 2.525 Lademöglichkeiten für Elektrofahrzeuge. Das bevölkerungsreichste Flächenland Nordrhein-Westfalen kann inzwischen 1.923 öffentlich zugängliche Ladepunkte vorweisen. Das ist ein Zuwachs um 46 Prozent von 1.320 Ladepunkten, die Ende 2018 installiert waren. In Hessen sind 1.724 Ladepunkte aufgebaut. Im Vorjahr waren es noch 1.413 Elektrotankstellen.
München liegt vor Hamburg
Das Städteranking führt inzwischen München an. Die bayerische Landeshauptstadt ist an Hamburg vorbeigezogen und verfügt jetzt über 1.103 öffentlich zugängliche Ladesäulen. In der Hansestadt sind es 1.070 Ladepunkte. Auf dem dritten Platz liegt Berlin, wo 974 Elektrotankstellen installiert sind. Mit deutlichem Abstand folgen Stuttgart mit 405 Ladepunkte, Düsseldorf mit 225 Ladesäulen und Leipzig mit 215 Elektrotankstellen. (su)
Erfurt wird auch in diesem Jahr Photovoltaikanlagen mit Energiespeichern fördern. Die neuen Förderrichtlinien treten noch im Januar in Kraft. Im Mittelpunkt stehen Eigenverbrauchs- und Mieterstromanlagen.
Das Umweltministerium des Landes Thüringen hat die Förderrichtlinie „Solar Invest“ verlängert. Ursprünglich war die Landesförderung von Photovoltaikanlagen mit Speichern nur bis zum Ende des vergangenen Jahres vorgesehen. Jetzt hat die Regierung beschlossen, aufgrund der hohen Nachfrage die Unterstützung weiterzuführen und zusätzliche 4,45 Millionen Euro in den Fördertopf zu legen. „Jedes geeignete Dach in Thüringen soll die Energie der Sonne einfangen können, das ist unsere Vision“, betont Umweltministerin Anja Siegesmund.
Speicher ist Voraussetzung
In der neuen Förderrichtlinie sind im Vergleich zum letzten Jahr zwei Änderungen enthalten. Zum einen gibt es in Zukunft einen festen Investitionszuschuss von 900 Euro pro installiertes Kilowatt Photovoltaikleistung für Anlagen mit einer Leistung von bis zu zehn Kilowatt. Voraussetzung ist, dass die Anlage mit einem Energiespeicher verbunden und für den Eigenverbrauch vorgesehen ist. Entsprechend liegt der Deckel für solche Projekte bei 9.000 Euro.
Verordnung tritt in wenigen Tagen in Kraft
Außerdem werden in Zukunft auch Solaranlagen zur Wärmeerzeugung über das Förderprogramm unterstützt. Damit will Erfurt die Energiewende im Wärmesektor forcieren und den Anteil der erneuerbaren Wärme erhöhen. Das gilt auch für Modelle der solaren Wärmeversorgung in Mehrfamilienhäusern. Außerdem unterstützt Thüringen in Zukunft auch Investitionen in Hausanschlussstationen.
Bisher ist die entsprechende Verordnung noch nicht im Thüringer Staatsanzeiger erschienen. Das wird aber nach Auskunft des Umweltministeriums in den nächsten Tagen geschehen. Dann wird die Thüringer Aufbaubank entsprechende Förderanträge entgegennehmen. (su)
PV Austria und TPPV loben österreichischen BIPV-Preis aus
Die österreichische Technologieplattform Photovoltaik, PV Austria und weitere Partner vergeben in diesem Jahr den zweiten Innovationsaward bauwerkintegrierte Photovoltaik. Bis zum 10. Februar können noch Bewerbungen eingereicht werden.
Bereits zum zweiten Mal lobt die österreichische Technologieplattform Photovoltaik (TPPV) den Innovationsaward für bauwerkintegrierte Photovoltaik aus. Bis zum 10. Februar 2020 um 12 Uhr können Architekten, Planer, Bauherren, Anlagenbetreiber und Unternehmer egal ob privat, öffentlich oder gewerblich ihre Leuchtturmprojekte im Bereich der BIPV einreichen. Danach wählt eine Jury die besten Projekte aus, die auf der Photovoltaiktagung von PV Austria am 12. März 2020 prämiert werden.
Grundlegende Voraussetzung ist, dass das Projekt einen Bezug zu Österreich hat. Das ist möglich, wenn das BIPV-Projekt in der Alpenrepublik umgesetzt wurde oder die Komponenten von einem österreichischen Hersteller geliefert wurden oder ein österreichisches Unternehmen die Planung oder Umsetzung übernommen hat. Auch österreichische Bauherren, die das entsprechende Gebäude außerhalb der Alpenrepublik errichtet haben, können sich bewerben
Die Einreichkriterien:
Außerdem sollten die Bewerber sich an die Einreichkritierien halten. Im Mittelpunkt steht natürlich die architektonische Qualität. Doch das Projekt soll nicht nur schön aussehen. Es geht auch um ein energetisches Gesamtkonzept. „Es sollten nicht nur einfach Solarmodule in die Fassade eines Gebäudes mit einer schlechten Energieeffizienz integriert sein“, erklärt Hubert Fechner. „Außerdem spielt die Kosteneffizienz und auch die Umweltverträglichkeit eine Rolle. Dabei geht es vor allem um ökologische und nachhaltige Lösungen. Das geht bis hin zum Recycling der Komponenten.“
Nicht zuletzt sollte der Bewerber auch in der Lage sein, das Projekt in der Öffentlichkeit bekannt zu machen. Bei diesem Kriterium geht es darum, dass es eine umsetzbare Kommunikationsstrategie mit den Bewohnern, der Öffentlichkeit, der Fachpresse hinsichtlich der architektonischen und energetischen Lösungen gibt und umgesetzt wird.
Weitere Informationen finden Sie auf der Internetseite von PV Austria. Dort können sie sich auch gleich bewerben. Bewerbungen sind auch über E-Mail an den Branchenverband möglich. Die Preisverleihung findet am 19.März 2020 im Rahmen des Photovoltaikkongresses statt. (su)
Auf einem Kanal im Norden der niederländischen Hauptstadt entsteht seit 2018 ein Quartier aus schwimmenden Häusern. Sie produzieren den gesamten Wärmebedarf der 100 Bewohner selbst mit der Sonne. Auch der Strom kommt aus Photovoltaikanlagen.
Schoonship heißt das neue Quartier, das gerade im Johan van Hasseltkanaal im Norden von Amsterdam entsteht. Es besteht aus 30 schwimmenden Häuser. Diese sind wiederum voll auf den modernsten Bau- und Energiestandard getrimmt. Denn die komplette Strom- und Wärmeversorgung übernimmt die Sonne.
Mehrere Photovoltaikanlagen, ein intelligentes Netz und mit Sonnenstrom angetriebene Wärmpumpen, Solarkollektoren und große Fenster sorgen dafür, dass die ganze Kraft der Sonne möglichst optimal ausgenutzt wird. Selbst das Abwasser wird recycelt und zu Energie weiterverarbeitet.
Eine ausführliche Beschreibung dieses außergewöhnlichen Quartiers finden Sie in der Projektdatenbank des Architekturportals Solar Age. (su)
On a canal in the north of the Dutch capital, a quarter of floating houses is under construction since 2018. They produce the complete heat requirement of the 100 residents themselves using the sun. The electricity also comes from photovoltaic panels.
Schoonship is the name of the new quarter that is currently being built in the Johan van Hasseltkanaal in the north of Amsterdam. It consists of 30 floating houses. These in turn are fully trimmed to the latest construction and energy standards. Because the sun will provide all the electricity and heat.
Several photovoltaic systems, an smart grid and heat pumps driven by solar power, solar collectors and large windows ensure that the sun’s full power is used as optimally as possible. Even the waste water is recycled and processed into energy.
A detailed description of this extraordinary quarter can be found in the project database of the architecture portal Solar Age. (su)
In Österreich steht die neue Koalition aus ÖVP und Grüne. Im Regierungsprogramm ist die Klimaneutralität bis 2040 avisiert. Ökostromausbau, Verbot von fossilen Heizungen und eine Verkehrswende sollen dabei helfen.
Jetzt ist es beschlossene Sache: Nachdem auch der Bundeskongress der österreichischen Grünen zugestimmt hat, ist der Weg frei für die erste schwarz-grüne Bundesregierung in der Alpenrepublik. Damit ist auch das Klimaschutzziel klar. Denn der Koalitionsvertrag sieht vor, dass Österreich bis 2040 komplett klimaneutral werden soll. Als Zwischenziel hält die Alpenrepublik an der hundertprozentigen Versorgung mit Ökostrom bis 2030 fest, das schon die vorherige Regierung anvisiert hat. Damit könnte die Alpenrepublik zum Vorreiter beim Klimaschutz in Europa werden und selbst Norwegen abhängen, wo vor allem die Wärmeversorgung noch eine Herausforderung ist.
Ausstieg aus der fossilen Heizung
Um das Ziel zu erreichen, soll ein neues Klimaschutzgesetz erarbeitet werden. Darin wird ein CO2-Budget enthalten sein, das mit den Zielen des Pariser Klimaschutzabkommens kompatibel ist. Zusätzlich dazu wird Österreich eine CO2-Steuer einführen. Außerdem werden alle neuen und bestehenden Gesetze auf ihre Klimaschutzwirksamkeit hin abgeklopft. Dass die Ziele auch umgesetzt werden, dafür soll ein Klimakabinett sorgen. Außerdem sollen alle Öl- und Kohleheizungen bis 2035 verboten werden und ab 2025 sollen keine Gastheizungen mehr im Neubau zugelassen werden.
Ökostrom schneller ausbauen
Ein Erneuerbare-Ausbau-Gesetz soll dafür sorgen, dass der Zubau von Photovoltaik- und Windkraftanlagen schneller geht. Zusätzlich haben die Regierungspartner ein Programm zur Unterstützung von einer Million Solaranlagen auf österreichischen Dächern vereinbart. Um die dadurch entstehenden Stromspitzen abzufangen, will Österreich in die Wasserstofftechnologie investieren. Das kann dann zur Wärmeversorgung und im Verkehr eingesetzt werden. Denn auch die Dekarbonisierung des Straßenverkehrs steht auf der Agenda – neben dem Ausbau des öffentlichen Verkehrsangebots sowie der Unterstützung von Rad- und Fußgängerverkehr. Gleichzeitig soll Fliegen teurer werden, wenn tatsächlich eine gerechte Kerosinbesteuerung eingeführt wird. Außerdem wird eine Steuer von zwölf Euro pro Flugticket eingeführt.
Ökosoziale Steuerreform vertagt
Auf Kritik stößt die Tatsache, dass die ökosoziale Steuerreform erst im Jahr 2022 vollendet werden soll. Denn erst dann wird die CO2-Steuer eingeführt, die Klima- und Umweltschützer schon für einen früheren Zeitpunkt gefordert haben. Trotzdem ist das neue Regierungsprogramm ein erster Schritt in die richtige Richutng. „Endlich wird wissenschaftsbasierte Klimapolitik gemacht und Klimaneutralität bis 2040 festgelegt“, erklärt Katharina Rogenhofer, Sprecherin des Klimavolksbegehrens. (su)
Die Wiener Stadtverwaltung lässt in Neubauten in Klimaschutzgebieten der Stadt nur noch Fernwärme oder Erneuerbare als Wärmequelle zu. Damit will Wien den CO2-Ausstoß im Neubau um 80 Prozent senken.
Die Stadt Wien hat die Bauordnung geändert. In Zukunft dürfen in Klimaschutzgebieten keine Öl- oder Gasheizungen mehr gebaut werden. Dort müssen sämtliche neu errichteten Gebäude entweder mit Fernwärme oder erneuerbaren Energien beheizt und gekühlt werden. Letzteres gilt auch als erfüllt, wenn die auf dem Dach eine Photovoltaikanlagen installiert ist, die eine Wärmepumpe oder Elektroheizstäbe versorgt. Die Häuser können auch mit Solarthermie beheizt werden. Da dies allerdings in der Regel im Verbund mit einer zweiten Technologie passieren muss, da die Solarthermie kaum die gesamte Heizlast abdecken kann, ist hier die Kombination mit einer Wärmepumpe oder einer Biomasseheizung notwendig.
Neuregelung gilt auch für frei finanzierten Wohnraum
Davon werden 80 Prozent der Neubauten in Wien betroffen sein. Denn nach Erhebungen der Stadt werden acht von zehn neue Gebäude in einem solchen Klimaschutzgebiet errichtet. Das gilt sowohl für öffentliche Gebäude wie Schulen oder Kindergärten, für die ohnehin schon eine Solarpflicht gilt, als auch für geförderten und frei finanziertem Wohnungsbau, Bürogebäude, Geschäftslokale. Damit verfolgt die Stadt das Ziel, bis 2030 den CO2-Ausstoß aus Neubauten um bis zu 80 Prozent zu senken, wie Vizebürgermeisterin Birgit Hebein betont.
Verordnungen werden vorbereitet
Die Festlegung von Klimaschutzgebieten basiert wiederum auf der Verordnung von Energieraumplänen im Paragraph 2 der Wiener Bauordnung. „Die Verordnungen sind bereits in Vorbereitung und werden bezirksweise erlassen“, gibt die Stadtverwaltung bekannt. „Begonnen wird mit den Bezirken 2, 3, 7 und 16. Danach folgen in mehreren Etappen die weiteren Bezirke. Bis Mitte 2020 sollen dann im gesamten Wiener Stadtgebiet zahlreiche Klimaschutzgebiete bestehen.
“ Bestandsgebäude sind von der Neuregelung ausgenommen. (su)
Elektromobilität: Übersicht der Förderungen erschienen
The Mobility House hat die aktuellen Förderprogramme für Elektroautos in Deutschland und Österreich zusammengestellt. Die Interessenten können für ihren Standort über die Postleitzahl die vorhandenen Unterstützungsmöglichkeiten abrufen.
Der Anbieter von Ladesystemen für Elektroautos, The Mobility House, hat die möglichen Förderungen der Elektromobilität zusammengestellt. Diese ist online abrufbar. Interessenten können einfach die Postleitzahl eingeben und bekommen die Informationen, welche Unterstützungen für den Bau der Ladesäule und für die Anschaffung eines Elektroautos am Standort existieren.
Manche Länder fördern zusätzlich
In der Regel sind das die Bundesförderung für die Ladeinfrastruktur, der Umweltbonus für den Kauf eines Elektroautos, den Berlin zahlt und die Förderung für den Kauf von elektrisch angetriebenen Nutzfahrzeugen und Bussen. In einigen Regionen kommen noch zusätzlich mögliche Unterstützungen durch die Bundesländer hinzu.
Österreichische Bundesförderung eingearbeitet
In der Datenbank ist der Fördergegenstand und die Förderhöhe beschrieben und welche Voraussetzungen erfüllt sein müssen. Über eine externen Link kommt der Interessent direkt zur detaillierten Beschreibung durch den Fördergeber und zum Antragsformular für die Unterstützung. In der Aufstellung ist auch die Unterstützung der Elektromobilität durch die österreichische Bundesregierung mit eingearbeitet. (su)
Drei große Carports werden am Umweltcampus der Hochschule Trier Elektroautos mit Solarstrom betanken. Ein Energiemanagement verhindert Überlastung des Systems und Lastspitzen im Netz.
Drei große Solarcarports sind das Herzstück eines emissionsfreien Mobilitäszentrums am Umweltcampus der Hochschule Trier in Birkenfeld. Dort versorgen die Module von IBC Solar aus Bad Staffelstein die Elektrofahrzeuge der Hochschule mit umweltfreundlichem Solarstrom. Dafür haben die Installateure von KLE Energie aus Hoppstädten-Weiersbach in Rheinland-Pfalz Module mit einer Gesamtleistung von 96,6 Kilowatt installiert.
Drei Ladesäulen installiert
Diese Module versorgen zwei Gleichstrom-Schnellladesäulen mit einer Ladeleistung von jeweils 75 Kilowatt und eine zusätzliche Wechselstrom-Ladestation. Gesteuert wird das gesamte System von einem Energiemanagement. Das hat nicht nur die Aufgabe, den Solarstrom intelligent auf die einzelnen Ladepunkte zu verteilen, sondern vor allem, Lastspitzen bei gleichzeitigen Laden von vielen Fahrzeugen zu vermeiden. Dafür sorgt zudem ein zusätzlich integrierter Gewerbestromspeicher. Erst wenn auch der Strom aus dem Speicher nicht mehr ausreicht, werden die einzelnen Ladepunkte abgeregelt.
Erfolgsmodell Elektromobilität im ländlichen Raum
Dadurch kann der Campus seine Anschlussleistung aus dem Netz reduzieren und viel Geld sparen. Das ist ein Teil der Wirtschaftlichkeitsberechnung. Doch auch die Stromkosten sind üppig. Schließlich betreibt die Hochschule am Umweltcampus einige elektrische Dienstfahrzeuge. Außerdem laden derzeit 15 weitere öffentliche und private Elektrofahrzeuge am Netz des Campus‘. Mit dem Projekt will die Hochschule Trier zudem nachweisen, dass die Elektromobilität im ländlichen Raum zum Erfolgsmodell werden kann. Denn der Umweltcampus Birkenfeld liegt 30 Kilometer östlich von Trier auf dem Lande. „Das Projekt stellt unter Beweis, in welch hohem Maß Solaranlagen in Kombination mit einem intelligenten Energiemanagementsystem, Speicher und Elektromobilität dazu beitragen können, unsere Klimaschutzziele zu erreichen. Das nicht nur in urbanen Regionen, sondern auch auf dem Land“, betont Udo Möhrstedt, Geschäftsführer und Vorstandsvorsitzender von IBC Solar. (su)
CO2-Preis steigt: Umstieg auf erneuerbare Heizung lohnt sich
Im Vermittlungsausschuss haben sich Bund und Länder auf einen Einstiegspreis für den CO2-Ausstoß in Höhe von 25 Euro pro Tonne geeinigt. Im Gegenzug wird die EEG-Umlage gesenkt.
Im Vermittlungsausschuss haben sich Vertreter des Bundestages und des Bundesrates auf einen Kompromiss bei der Besteuerung des CO2-Ausstoßes geeinigt. Wie die ARD unter Berufung auf das Bundeswirtschaftsministerium mitteilt, wird der Ausstoß jeder Tonne CO2 ab 1. Januar 2021 25 Euro kosten. Bisher sah das vom Bundestag mit den Stimmen der CDU, CSU und SPD verabschiedete Klimaprogramm einen Einstiegspreis von zehn Euro vor. Durch den höheren CO2-Preis wird der Umstieg auf eine Heizungsanlage mit erneuerbaren Energien wie photovoltaisch angetriebenen Elektroheizstäben oder Wärmepumpen einfacher und noch wirtschaftlicher.
Länder bekommen Finanzausgleich
Zudem wird die schon mit dem Klimaprogramm beschlossene Steigerung bis 2026 bleiben. Allerdings ist die Steigerung jetzt auf einen Mindestpreis von 65 Euro statt bisher 55 Euro festgelegt. Mit den Einnahmen soll unter anderem die EEG-Umlage gesenkt werden. Außerdem werden aus den Einnahmen auch Ausgleichszahlungen für die Bundesländer finanziert. Sie bekommen bis 2024 1,5 Milliarden Euro als Kompensation für die Steuerausfälle unter anderem aufgrund einer höheren Entfernungspauschale.
Lange Autofahrten werden subventioniert
Bisher hielt die Länderkammer diese Subventionierung von langen Autostrecken für kontraproduktiv. Statt dessen wollte der Bundesrat klimafreundliche Mobilitätsangebote stärker fördern. Doch offensichtlich haben hier die Länder ihren Widerstand aufgegeben. Die Entfernungspauschale steigt ab dem 21. Kilometer sogar noch stärker als bisher. Waren ursprünglich fünf Cent für die Förderung von Vielfahrern vorgesehen, hat sich der Vermittlungsausschuss auf acht Cent pro Kilometer geeinigt. Durch höheren CO2-Preis wird aber grundsätzlich Autofahren teurer. Gleichzeitig wird die Mehrwertsteuer auf Bahntickets auf den Fernverkehrsstrecken auf sieben Prozent gesenkt. Bisher kassiert der Fiskus 19 Prozent Mehrwertsteuer auf die Fahrkarten im Fernverkehr. (su)
In the future, the electricity used to operate the Ajax Amsterdam stadium will not only be covered by the solar system on the roof and a battery storage tank. Electric cars will also contribute to the supply.
In the future, visitors to the Johan Cruijff Arena (JCA) Amsterdam will be able to use their electric cars to contribute to the power supply of the football stadium. The Mobility House has equipped the home stadium of Dutch first division club Ajax Amsterdam with a charging solution that makes this possible. With the vehicle-to-grid solution from the Munich-based provider, the electric cars can be integrated into the sports facility’s power grid.
Charging control integrates electric cars into the building grid
A total of 15 new charging stations were combined with the existing three battery storage units. The latter consist of 148 batteries, which are actually installed in electric cars from Nissan and already deliver power in the megawatt range. They store the electricity from the solar systems on the roof, which is not consumed immediately. The modules on the stadium have a power output of one megawatt. Using an intelligent charging control system, the batteries of the electric cars – with the consent of the owners – can now also supply the electricity during a home game of the Dutch record champions. This enables them to reduce the amount of electricity supplied from the grid and, above all, cover peak loads.
The stadium operator wants to expand the system even further. In the future, it plans to successively expand JCA’s nearly 2,000 parking lots with intelligent charging infrastructure. This will also make it possible in future to take over the emergency power supply for the JCA in the event of a power failure. (su)
Solar Age hat ein Planungstool für Solarfassaden und Indachanlagen von Valentin Software in seine Internetseite integriert. Es ist in der rechten Spalte neben den News des Architekturportals zu finden.
Zusammen mit Valentin Software ermöglicht das Architekturportal Solar Age eine erste grobe Planung von Solarfassaden und solaren Dachanlagen. Über einen Link kommt der Planer und Architekt direkt zur Seite von PV Sol, dem Planungstool von Valentin Software.
Dort kann der Planer die Standortdaten des Gebäudes eingeben sowie die Ausrichtung der Solaranlage. Dadurch erhält er schon die Einstrahlungsdaten des gesamten Jahres. Nach der Eingabe des Verbrauchsprofils im Gebäude – hier sind unter anderem die standardisierten Lastprofile vom Einpersonenhaushalt bis zum Mehrfamilienhaus und Gewerbebetrieb hinterlegt – bekommt er den Lastgang im Gebäude angezeigt. Danach muss er noch den Modultypen eingeben, der für die Installation geplant ist und den Wechselrichter. Hier sind alle am Markt erhältlichen Produkte aufgeführt. Für die Indachanlage gibt der Planer dann die Neigung des Daches ein. Soll eine Solarfassade geplant werden, kann er den Neigungswinkel einfach auf 90 Grad setzen. Anschließen kann er das gesamte Photovoltaiksystem simulieren – inklusive der Stromproduktion und des Eigenverbrauchs im Gebäude.
Der Strom für den Betrieb des Stadions von Ajax Amsterdam wird in Zukunft nicht nur mit der Solaranlage auf dem Dach und einem Batteriespeicher abgedeckt. Vielmehr werden auch Elektroautos zur Versorgung beitragen.
In Zukunft können die Besucher der Johan Cruijff Arena (JCA) Amsterdam mit ihren Elektroautos zur Stromversorgung des Fußballstadions beitragen. Denn The Mobility House hat das Heimstadion des niederländischen Erstligisten Ajax Amsterdam mit einer Ladelösung ausgestattet, die das möglich macht. Mit der sogenannten Vehicle-to-Grid-Lösung des Münchner Anbieters können die Elektroautos in das Stromnetz der Sportstätte integriert werden.
Ladesteuerung bindet Elektroautos ins Hausnetz ein
Insgesamt neue 15 Ladestationen wurden mit den bereits vorhandenen drei Batteriespeichern kombiniert. Letztere bestehen aus 148 Batterien, die eigentlich in Elektroautos von Nissan verbaut sind und liefern immerhin schon Leistungen in Megawattbereich. Sie lagern den Strom der Solaranlagen auf dem Dach zwischen, der nicht sofort verbraucht wird. Die Module auf dem Stadion leisten zusammen ein Megawatt. Mittels einer intelligenten Ladesteuerung können jetzt auch noch die Batterien der Elektroautos – mit Einwilligung der Besitzer – den Strom während eines Heimspiels der holländischen Rekordmeisters liefern. Damit können sie den Strombezug aus dem Netz verringern und vor allem Lastspitzen abdecken.
Der Stadionbetreiber will das System noch weiter treiben. In Zukunft will er die knapp 2.000 Parkplätze der JCA sukzessive mit intelligenter Ladeinfrastruktur erweitert. Damit wird es in Zukunft auch möglich, im Falle eines Stromausfalls die Notstromversorgung für die JCA zu übernehmen. (su)
Wohnungsgenossenschaft Schwarzheide setzt auf Mieterstrom
Die WBG Schwarzheide will von Solarimo zwei ihrer Gebäude mit Solaranlagen ausstatten lassen. Den Strom verbrauchen die Mieter. Denn die ersten drei Mieterstromprojekte stoßen auf große Nachfrage und die Risiken für die Genossen sind minimal.
Der Berliner Anbieter von Mieterstromprojekten, Solarimo, wird in der Lausitzer Stadt Schwarzheide zwei weitere Mehrfamilienhäuser mit jeweils einer Solaranlage ausstatten. Bisher hat Solarimo in der Stadt und im Nachbarort Senftenberg schon drei Mieterstromprojekte zusammen mit der Wohnungsbaugenossenschaft (WBG) Schwarzheide umgesetzt. Diese dafür errichteten Anlagen leisten insgesamt 140 Kilowatt. Sie versorgen 120 Wohneinheiten teilweise mit Strom.
Keine steuerlichen Risiken
Auch die Energie der jetzt geplanten Anlagen mit einer Gesamtleistung von 80 Kilowatt werden die Mieter des Gebäude verbrauchen, auf deren Dächern die Anlagen entstehen. Die WBG Schwarzheide ist auf Solarimo mit dem Anliegen zugekommen, weitere Mieterstromprojekte umzusetzen, weil die Resonanz auf die ersten drei Anlagen enorm war. Zumal die Risiken für die WBG minimal sind. „Zunächst waren wir etwas skeptisch wegen der steuerlichen Risiken“, erklärt Thomas Gehrke, Geschäftsführer der WBG Schwarzheide, mit Blick auf die Tatsache, dass Wohnungsbaugenossenschaften ihre steuerlichen Vorteile verlieren könnten, wenn sie Einkünfte über Ttätigkeiten jenseits der Vermietung von Wohnraum erzielen. „Aber durch das Dachpachtmodell von Solarimo fällt das nicht ins Gewicht.“
Solarimo pachtet das Dach
Denn Solarimo übernimmt den gesamten Prozess von der ersten Planung über die technische Umsetzung bis hin zum Betrieb der Anlage und der Vermarktung des Stroms. Im Gegenzug bekommt die Genossenschaft eine Dachpacht und hat keinerlei Kosten. „Die Umsetzung der ersten Projekte mit Solarimo hat so gut geklappt, da haben wir direkt gesagt: Wir haben noch weitere Dächer”, erklärt Thomas Gehre. Für ihn ist die Weiterführung der Mieterstromprojekte ein großer Schritt in Richtung eines modernen Gesamtkonzepts für attraktives, genossenschaftliches Wohnen.
Die künftigen Projekte sollen sogar noch weitergehen. Denn nicht nur die Versorgung der Haushalte im Mehrfamilienhaus steht auf dem Programm. Um so viel wie möglich Strom vor Ort nutzen und mit der Energie gleich noch die Mobilität für die Mieter abdecken zu können, lässt die WBG Schwarzheide zusätzliche Ladesäulen für Elektrofahrräder und Elektroautos bauen. (su)
Efficiency of thin-film modules increased to 17.6 percent
Nice Solar Energy has pushed the efficiency of its thin-film modules to a new record level. The company has achieved this with improvements in the production process and cell interconnection.
The Swabian module manufacturer Nice Solar Energy has set a new efficiency level in thin-film photovoltaics. The company, based in Schwäbisch Hall, Germany, has increased the efficiency of its modules, which generate electricity with a semiconductor layer consisting of copper, indium, gallium and diselenide (CIGS), to 17.6 percent – and that on the module surface.
This is particularly important in thin-film photovoltaics. Here, the differences between the efficiencies achieved on small surfaces in the laboratory and then later on the size of an module are particularly large. This is mainly due to the fact that there are not only interconnection losses as in crystalline silicon technology is a challenge, but also to the consistent application of the semiconductor layer.
Optimized manufacturing process
Nice Solar Energy has already gained a lot of experience at this point. Therefore, the new efficiency record is also based on a combination of this existing experience in the production of thin-film modules and some improvements in the production process. In particular, the company has worked on better and more uniform deposition of semiconductor layers and has implemented new concepts for cell interconnections.
Establishing thin film more strongly
With this new record Nice Solar Energy not only wants to set itself apart from the competition in the CIGS sector. Rather, the Swabians want to push through the technology more strongly than crystalline silicon photovoltaics and establish it on the world market in the long term. After all, it has a number of advantages, especially for building-integrated photovoltaics. They can cope better with a less perfect alignment to the sun. They also have a better temperature coefficient, i.e. they lose less power than crystalline modules as temperatures rise. (su)
Sonnen- und Regenschutz sowie gleichzeitig Stromerzeugungsanlage – die neue, Schatten spendende Überdachung des Innenhofs des Collège de la Nativité übernimmt gleich drei Aufgaben. Damit setzt die Schule in Aix-en-Provence auf Nachhaltigkeit.
In der südfranzösischen Stadt Aix-en-Province wurde ein Collège mit einem neuen Sonnenschutzsystem ausgestattet. Das sorgt aber nicht nur für Schatten auf dem Innenhof des Schulkomplexes. Vielmehr übernimmt es auch einen Teil der Stromversorgung. Denn statt normale, nur teilweise transparente Gläser einzusetzen, wie das bei Sonnenschutzsystemen dieser Art üblich ist, besteht die Überdachung des Innenhofs des Collèges komplett aus Solarmodulen.
50 Prozent Transparenz erreicht
Damit der Innenhof nicht komplett dunkel ist, wurden semitransparenten Module eingesetzt, die die Sonnenstromfabrik in Wismar geliefert hat. Statt der üblichen 60 Zellen pro Modul wurden für die Paneele nur 32 Zellen zwischen zwei Gläser laminiert. Dadurch sinkt zwar die Leistung, aber immerhin die Hälfte des Lichts dringt bis in den Innenhof durch und sorgt dort für eine ganz eigene Lichtstimmung. Außerdem setzt das Collège mit dem Photovoltaikinnenhof ein Zeichen für mehr Nachhaltigkeit.
Weitere Einzelheiten zu diesem System können Sie in einem aktuellen Dossier lesen, das neu in der Projektdatenbank von Solar Age zur Verfügung steht. (su)
The Mobility House hat einen Leitfaden für die Auslegung der Ladeinfrastruktur von Elektroautos für TGA-Planer veröffentlicht. Neben den relevanten Normen beinhaltet er auch Anwendungsszenarien.
Der Anbieter von Ladesystemen für Elektroautos, The Mobility House, hat ein kostenloses Handbuch Elektromobilität veröffentlicht. Der Leitfaden erklärt die Grundlagen, worauf Planer der technischen Gebäudeausrüstung (TGA) achten müssen, wenn sie die Ladeinfrastruktur für Elektroautos in einem Neu- oder Bestandsbau auslegen. Schließlich steige die Relevanz von intelligenten Ladelösungen für die moderne Gebäudeplanung, begründet The Mobility House die Bedeutung des Handbuchs. Denn immer mehr Bauherren und Architekten wollen Ladesäulen und die TGA-Planer müssen auf diese Anforderung reagieren. Zudem gelte es, die aktuellen Normen und anstehenden EU-Richtlinien zu kennen und einzuhalten.
Ladesäulen ins Gebäudeenergiesystem einbinden
Diese listet der Leitfaden – neben den am Markt erhältlichen Kabel- und Steckersystemen – detailliert auf. Hier gehen die Autoren neben der relevanten VDE-Norm auch auf die entsprechende DIN-Norm und die Gebäudeeffizienzrichtlinie ein. Sie beschreiben, wie der Strombedarf von Elektroautos aussieht und wie er in das Energiesystem des Gebäudes eingebunden werden kann. Ergänzend dazu haben die Autoren des Handbuchs unterschiedliche Anwendungsszenarien beschrieben und erklären, wie die Ladeinfrastruktur für diese ausgelegt werden sollte. Die Spanne reicht von Anlagen mit zehn Wohneinheiten, in denen drei Elektroautos vorhanden sind, bis hin zu 100 Wohneinheiten, in denen 30 Bewohner ein Elektroauto fahren. (su)
Kirchengebäude in der Schweiz versorgt sich selbst
Das Gebäude der Kirchengemeinde in Ebmatingen in der Schweiz wird nach der Sanierung komplett klimaneutral betrieben. Das Herzstück des Konzepts ist ein Solardach.
Die römisch-katholische Kirche St. Farnziskus in der kleinen schweizerischen Gemeinde Ebmatingen, nur wenige Kilometer südöstlich von Zürich, wurde vor 30 Jahren errichtet. In diesem Jahr wurde das Gebäude saniert und energetische auf den technisch neusten Stand gebracht. In Zukunft wird die Energieversorgung eine Mischung aus verschiedenen Technologien übernehmen. So wurde das neu und dicker isolierte Dach zum Teil mit Photovoltaikmodulen eingedeckt. Die restliche Dacheindeckung besteht aus PVT-Elementen. Das sind solarthermische Kollektoren, die zusätzlich mit Photovoltaikmodulen ausgestattet sind.
Insgesamt kommt die Kirche damit auf eine Photovoltaikleistung von 90 Kilowatt. Da diese zum Teil nach Norden ausgerichtet ist, liegt der Ertrag zwar bei im Vergleich zum reinen Südausrichtung der Module geringen 78,9 Megawattstunden pro Jahr. Doch das sind 221 Prozent des Stroms der in der Kirche – auch zum Heizen – gebraucht wird.
Geschenk des Himmels annehmen
Denn die Wärmeenergie kommt nur zum Teil aus den PVT-Elementen auf dem Dach. Die eigentliche Heizlast übernimmt eine Geothermieanlage. Die Wärmepumpe dieses Systems wird wiederum ausschließlich mit Solarstrom betrieben. Auf diese Weise schafft es die Kirchengemeinde von Ebmatingen, ihr Gotteshaus komplett klimaneutral zu betreiben. Dieses Konzept in Kombination mit der architektonisch herausragenden Umsetzung wurde mit dem diesjährigen europäischen Solarpreis in der Kategorie „Besitzer und Betreiber von Erneuerbare-Energien-Anlagen“ ausgezeichnet.
Die Jury begründet ihre Entscheidung damit, dass die Kombination von Alt und Neu in der Tradition von Hermann Scheer, dem Gründer von Eurosolar steht. „Er hat – obwohl agnostisch – 2008 bei der Einweihung einer der größten Photovoltaikanlagen Roms in der Nähe der Peterskirche gesprochen“, unterstreicht die Jury. „Franziskus Ebmatingen ist ein Vorbild dafür, das solare Potenzial von Kirchen überall zu nutzen und – man könnte sagen – eines der Geschenke des Himmels anzunehmen: die Kraft der Sonne.“ (su)
Freiburger Rathaus erreicht fast ausgeglichene Energiebilanz
Das Freiburger Rathaus bezieht seine Energie aus einer Solarfassade und einer Photovoltaikanlage auf dem Dach. Das Nullenergiekonzept ist im ersten Betriebsjahr fast aufgegangen.
Die Stadt Freiburg hat jüngst den Iconic Award des Rates für Formgebung für ihr Engagement in Sachen Energiewende bekommen. Ein zentraler Bestandteil ist das neue Rathaus im Stühlinger, das als Nullenergiegebäude konzipiert ist. Dabei geht es darum, dass das Gebäude so viel Energie erzeugt, wie es braucht, also um eine Netto-Nullenergiebilanz.
Um das zu erreichen, wurde die Fassade des 2017 gebauten Hauses mit Photovoltaikmodulen gebaut. Weitere Solarmodule sind auf dem Dach aufgeständert. Außerdem sind dort auch noch PVT-Kollektoren installiert. Das sind Hybride aus solarthermischen Absorbern, die für die Wärme für das Gebäude liefern, und einem darauf aufgesetzten Photovoltaikmodul. Diese liefern vor allem für die Kantine Strom und Wärme.
EnEV gibt Bilanzkreis vor
Der Strom aus der Solarfassade und den Aufdachanlagen wird nicht nur für den Betrieb unter anderem der Hausbeleuchtung und der Fahrstühle genutzt, sondern auch für den Betrieb der beiden Wärmepumpen, die im Winter für die Heizenergie und die Kühlung im Sommer sorgen. Hier fließt allerdings der Verbrauch der Elektrogeräte in den Büroräumen wie Computer, Drucker oder Server nicht mit ein. Der Bilanzkreis für die Ermittlung des Netto-Nullenergieverbrauchs bezieht allein den von der Energieeinsparverordnung (EnEV) berücksichtigten Verbrauch mit ein.
Anlagentechnik optimiert
Das Fraunhofer Institut für Solar Energiesystem hat mit dem Ökostromversorger Badenova, dem Ingenieurbüro DS Plan und der Stadt Freiburg beobachtet, ob das Konzept aufgegangen ist. Nach dem ersten vollen Betriebsjahr 2018 wurde das Ziel fast erreicht. Allerdings gibt es hier noch Optimierungspotenzial unter anderem beim Betrieb der Wärmepumpen, das inzwischen teilweise gehoben wurde. Außerdem ist Teil des Forschungsprojekts, Betriebs- und Regelstrategien zu untersuchen und zu entwickeln, die unter anderem zu einer besseren Bedarfsabdeckung im Gebäude führen. Für das Jahr 2019 sehen die Experten, dass das geplante Ziel einer ausgeglichenen Bilanz zwischen Energieerzeugung und Verbrauch erreicht wird. (su)
Church building in Switzerland becomes self-sufficient
The parish building in Ebmatingen in Switzerland will be completely climate-neutral after renovation. The heart of the concept is a solar roof.
The Roman Catholic Church of St. Farnziskus in the small Swiss community of Ebmatingen, just a few kilometres southeast of Zurich, was built 30 years ago. This year, the building was renovated and brought up to the latest technical standards in terms of energy technology. In the future the energy supply will take over a mixture of different technologies. The new and thicker insulated roof was partly covered with photovoltaic modules. The remaining roofing consists of PVT elements. These are solar thermal collectors that are additionally equipped with photovoltaic modules.
This gives the church a total photovoltaic power output of 90 kilowatts. Since some of the modules are oriented to the north, the yield is a low 78.9 megawatt hours per year compared to the pure south orientation of the modules. But that is 221 percent of the electricity used in the church – also for heating.
Accepting heaven‘ s gift
After all, only part of the thermal energy comes from the PVT elements on the roof. The actual heating load is taken over by a geothermal facility. The heat pump of this system is operated exclusively with solar power from the roof. In this way, the parish of Ebmatingen manages to operate its church completely climate-neutral. This concept in combination with the architecturally outstanding implementation was awarded this year’s European Solar Prize in the category „Owners and operators of renewable energy systems“.
The jury justified its decision with the fact that the combination of old and new is in the tradition of Hermann Scheer, the founder of Eurosolar. „Although agnostic, he spoke at the inauguration of one of Rome’s largest photovoltaic systems near St. Peter’s Church in 2008,“ the jury emphasized. „St. Franziskus Ebmatingen is a role model for harnessing the solar potential of churches everywhere and – one might say – for accepting one of heaven’s gifts: the power of the sun. „(su)
Solares Schulgebäude in Luxemburg bekommt europäischen Solarpreis
Das Gebäude eines Technischen Gymnasiums in Luxemburg wurde mit dem diesjährigen europäischen Solarpreis in der Kategorie Solare Architektur und Stadtplanung ausgezeichnet.
Im luxemburgischen Esch-sur-Alzette hat Eurosolar mehrere herausragende Projekte mit bauwerkintegrierter Photovoltaik mit dem diesjährigen europäischen Solarpreis ausgezeichnet. So hat in der Kategorie „Solare Architektur und Stadtplanung“ wurde der Neubau des Technischen Gymnasiums für die Berufe des Gesundheitswesens in Ettelbruck in Luxemburg ausgezeichnet. Zusammen mit dem Ingenieursbüro Batic, das bewusst bei jedem Projekt nach innovativen Lösungen sucht und nicht auf herkömmlicher Technologie beharrt, hat das Büro Fabeck Architectes nach eigenen Angaben die erste öffentliche Schule Luxemburgs auf Plusenergiestandard errichtet.
Solardach spart Baumaterial
Die Stromversorgung des gesamten Gebäudes übernehmen 1.626 Solarmodule, die gleichzeitig die Aufgaben einer Dachhaut übernehmen. Durch die Integration der Solaranlage erreichen die Architekten eine ansprechende Optik und gleichzeitig eine positive Energiebilanz. Außerdem reduziert die Lösung die notwendigen Baumaterialien – ein weiterer Beitrag, um denCO2-Fußabdruck des Gebäudes zu verringern.
Solare Fassade übernimmt Wärmeversorgung
Das Solardach übernimmt die Stromversorgung des Gebäudes. Zusätzlich dazu übernehmen solarthermische Kollektoren, die auf einer Fläche von 350 Quadratmetern in die Außenhaut des Gebäudes integriert sind, die Warmwasserversorgung des Gebäudes. Die in der Fassade gewonnene Wärme wird in einem Speicher mit einem Fassungsvermögen von 90.000 Litern zwischengelagert. Da das Gebäude zusätzlich sehr gut gedämmt ist, reicht die gespeicherte und an sonnigen Wintertagen zusätzlich erzeugte Wärme aus, um das Gebäude auch in den kalten Monaten mit ausreichend Energie zum Heizen zu versorgen. (su)
Solar school building in Luxembourg receives European Solar Prize
The building of a technical high school in Luxembourg was awarded this year's European Solar Prize in the category Solar Architecture and Urban Planning.
In Esch-sur-Alzette, Luxembourg, Eurosolar has awarded this year’s European Solar Prize to several outstanding projects with building-integrated photovoltaics. In the category „Solar Architecture and Urban Planning“, for example, the new building of the Technical High School for the Professions of Health Care in Ettelbruck in Luxembourg was awarded. Together with the engineering firm Batic, which deliberately seeks innovative solutions for every project and does not insist on conventional technology, Fabeck Architectes says it has built the first public school in Luxembourg to the Plus energy standard.
Solar roof saves building material
The entire building is powered by 1,626 solar modules, which also act as roof cladding. By integrating the solar system, the architects achieve an attractive appearance and at the same time a positive energy balance. In addition, the solution reduces the necessary building materials – a further contribution to reducing the CO2 footprint of the building.
Solar facade supplies heat
The solar roof is responsible for the power supply of the building. In addition, solar thermal collectors, which are integrated into the outer skin of the building over an area of 350 square metres, supply the building with hot water. The heat generated in the façade is buffered in a storage tank with a capacity of 90,000 litres. Since the building is also very well insulated, the heat stored and additionally generated on sunny winter days is sufficient to supply the building with sufficient energy for heating even in the cold months. (su)
Die Bundesregierung hat ihren Entwurf des Gebäudeenergiegesetzes verabschiedet. Es soll die Vorgaben der EU umsetzen, nur noch Niedrigstenergiegebäude zu errichten. Ob das mit dem jetzigen Text gelingt, erklärt Carsten Körnig, Hauptgeschäftsführer des Bundesverbandes Solarwirtschaft (BSW Solar).
Das Gebäudeenergiegesetz soll die EU-Richtlinie über Nearly Zero Energy Buildings umsetzen. Inwieweit gelingt das nach Ihrer Expertise? Carsten Körnig: Die Bundesregierung droht mit dem vorliegenden Gesetzesentwurf eine einmalige Chance zu verpassen, die eigenen Ziele – ein nahezu klimaneutraler Gebäudebestand bis 2050 – entscheidend voranzutreiben. Der Verzicht auf eine Verschärfung der energetischen Anforderungen an Neu- und Bestandsgebäude sowie bei der Nutzungspflicht von erneuerbaren Energien ist nicht nachvollziehbar. Die Beschlussfassung im Klimakabinett, diese Reformverweigerung jetzt auch noch für die nächsten vier Jahre zementieren zu wollen, betrachten wir geradezu als skandalös. Auch der nur in homöopathischen Dosen geplante Einstieg in die CO2-Bepreisung kann dieses Versäumnis nicht kompensieren.
Immerhin gibt es weiterhin finanzielle Unterstützung als Anreiz. Reicht das aus, um zumindest den Neubau klimaneutral zu beheizen – auch ohne Ordnungsrecht?
Die von der Bundesregierung in Aussicht gestellte Verbesserung von Förderkonditionen ist zu begrüßen. Subventionen allein werden den „schlafenden Riesen“ aber nicht wecken können. Dazu bedarf es auch verbindlicher und zeitgemäßer Mindeststandards.
Der Primärenergiebedarf wird anhand eines Referenzgebäudes bemessen. Das hat sich im Vergleich zur derzeitigen Energieeinsparverordnung (EnEV) nicht verändert. Was heißt das für die Gebäude, die in Zukunft gebaut werden?
Mit dem GEG soll die EU-Richtlinie über die Gesamteffizienz von Gebäuden in deutsches Recht umgesetzt werden. Die Richtlinie sieht vor, dass ab 2021 alle Neubauten Niedrigstenergiegebäude sein sollen. Laut EU-Kommission würde ein KfW-40-Niveau diesen Anforderungen entsprechen. Mit dem GEG werden die energetischen Anforderungen an Neubauten gegenüber dem derzeit gültigen EnEV-Standard – KfW-75 – allerdings fortgeschrieben. Damit bleibt die Bundesregierung sogar hinter den Anforderungen ihrer eigenen Effizienzstrategie Gebäude zurück, we